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ABSTRACT 

 

Robinson, Nathan Jack. Ph.D., Purdue University, December 2014. Migratory ecology of 

sea turtles. Major Professor: Jeffrey Lucas.  

 

Establishing the movement patterns of free-ranging animals is imperative to understanding 

their behavior and ecology, and is often necessary for designing effective conservation-

strategies. This is especially true for migratory species, such as sea turtles, whose long-

distance movements form a major component of their life history. In this thesis, I 

investigated which factors are driving the migratory behavior of the leatherback turtle 

Dermochelys coriacea. Firstly, I examined whether the timing of the nesting season 

(nesting phenology) is influenced by oceanographic conditions along the pre-nesting 

migratory route or by variation in population structure. The discovery that nesting 

phenology appears more influenced by population structure than environmental conditions 

has implications for the capacity of these animals to adapt to climate change. Leatherback 

turtle populations may not be expected to respond directly to increasing global 

temperatures by shifting their nesting phenology, and so nesting under cooler seasonal 

conditions; however, this could still occur in populations that are increasing in size or 

average age of the reproductively active individuals. Secondly, I outlined a novel method 

for identifying behavioral changes in satellite telemetry based on Change-Point Analysis 

(CPA). Subsequently, I applied it to analyze the post-nesting leatherback turtles tracked 

from the iSimangaliso Wetland Park, South Africa. Half (n = 8) of the turtles tracked 

migrated to foraging areas in the shallow coastal waters of the Sofala Banks, Mozambique. 

Such coastal behavior is very rare in leatherback turtles, which are otherwise often 

described as ‘pelagic specialists’. Overlaying the output of the CPA model with 

contemporaneous oceanographic data suggests that these coastal habitats are productive, 

all-year round foraging areas. In contrast, the foraging behavior of the turtles that migrated 

towards pelagic foraging areas in the Western Indian or South Atlantic Ocean appears to 

be more associated with ephemeral and dynamic oceanographic processes. Thirdly, I 

validated the use of stable isotope analysis as a tool for determining the foraging habitats 

of leatherback turtles. By comparing the stable isotope analysis data to the satellite tracking 

data, I was also able to infer the potential affects that satellite telemetry devices with high 

drag can have on migratory behavior. Stable isotope analysis confirmed the importance of 

the Sofala Banks as a critical foraging habitat for leatherback turtles, but it also previous 

satellite tracking studies employing high drag devices might have inadvertently been 

influencing migratory behavior. In essence, altering the very behaviors these devices are 

used to measure. The findings of this thesis highlight how migratory ecology is influenced 
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by a complex array of factors including population dynamics, individual variation, and 

environmental conditions. Unraveling these factors can provide surprising insights into the 

behavior of these animals and help guide the development for future conservation 

strategies. 
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CHAPTER 1. INTRODUCTION TO THE MIGRATORY ECOLOGY OF SEA 

TURTLES 

 

Movement is among the most basic and conspicuous characteristics of life. Some 

of the most impressive movements in the animal kingdom are those undertaken by long-

distance migrants such as sea turtles. Sea turtles are known to routinely swim distances 

that may span over 10,000 km – the distance between the eastern and western shores of 

the Pacific Ocean – when migrating from nesting to foraging areas (Nichols et al. 2000, 

Benson et al. 2011). These epic migrations are understandably a central feature of the 

life-history of long-distance migrants. Knowledge of the factors governing migratory 

behavior can provide wide-ranging insights into their ecology and is often invaluable for 

conservation management.  

In this chapter, I will present an introductory overview of the migratory ecology 

of sea turtles, with an emphasis on the leatherback turtle Dermochelys coriacea – the 

species that will be the central focus of this thesis. I begin by discussing the evolutionary 

basis for why long-distance migrations are a common trait of almost all sea turtle 

populations. Subsequently, I will introduce the 3 topics that I will focus on in the 

following chapters and outline the major research gaps that I will address. 

 

1.1 Evolution of migratory behavior in sea turtles 

 

Migration is an adaptation to spatially- and temporally-heterogeneous 

environments (Alerstam et al. 2003, Fryxell and Holt, 2013). By migrating between 

habitats, animals are able to better exploit certain resources (e.g. food or nesting habitat) 

than they could if they remained at a fixed location (Cohen 1976). For migration to also 

become an evolutionarily stable strategy, the benefits provided by migrating must 

outweigh the potential costs (e.g. time and energy) of moving between these locations
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(Simpson and Sword 2010). As the energetic costs of locomotion differ between animals 

that walk, swim, or fly (Schmidt-Nielsen 1972), the occurrence and distance of migration 

similarly differ between animals utilizing these separate modes of transport (Tucker 

1975). Swimming appears to generally be the most energetically efficient method of 

moving long-distances (Schmidt-Nielsen 1972) and long-distance migrations are thus 

particularly common among marine species (Dingle 2006). 

Of the seven extant species of sea turtle, each has been recorded conducting 

routine long-distance migrations (Godley et al. 2008). The prevalence of migratory 

behavior in sea turtles stems partially from their evolutionary heritage. Sea turtles, like 

many reptiles, lay hard-shelled amniotic eggs. The capacity to lay such eggs evolved 

when the earliest reptiles diverged from primitive amphibians about 300 million years 

ago (Reisz 1997). The membrane-lined amniotic egg protected the embryo from 

desiccation, freeing reptiles from the need to return to water for reproduction (Packard 

and Seymour 1997) – as is still the case for all modern amphibians. With this novel 

adaptation, reptiles were able to rapidly spread across terrestrial environments (Carroll 

2001). However, about 110 million years ago the ancestors of all sea turtles returned to 

the sea and readapted to life in marine habitats (Kear and Lee 2006). Extant sea turtles 

now have a range of adaptation specifically suiting them to a life at sea, such as flipper-

shaped limbs (Davenport et al. 1984), lungs that can survive the intense pressures 

experienced while diving down the water column (Berkson 1967), and specialized glands 

for removing the excess salt intake that is a consequence of inhabiting marine 

environments (Reina et al. 2002). One trait for terrestrial living that has been retained is 

the requirement to lay their eggs on dry land. Even though sea turtles are now able to 

feed, breed, and even mate in the water, adult females still emerge on sandy beaches 

worldwide to nest in the dry sand away from the water’s edge. Nevertheless, the 

environmental conditions that create a suitable nesting beach do not necessitate that a 

productive foraging area will be available in nearby waters. As a result, sea turtles 

evolved the capacity to conduct routine migrations to-and-from their distant foraging 

areas and nesting rookeries (James et al. 2005; Benson et al. 2011). 
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1.2 Threats and conservation status of the leatherback turtle 

 

Leatherback turtles are listed on the IUCN as globally vulnerable and populations 

in the Pacific Ocean, Indian Ocean, and Southern Atlantic Ocean are of special concern 

(Wallace et al. 2013).  During the latter half of the 20th century, egg poaching was the 

primary factor leading to the rapid decline of many leatherback turtle populations (Spotila 

et al. 2000). Although in many cases this issue has now been addressed (Santidrián 

Tomillo et al. 2008, Nel et al. 2013), many populations have continued to decline and this 

has been largely attributed to mortality associated with fisheries by-catch (Spotila et al. 

2000). Leatherback turtles are often caught or entangled in nets or on hooks intended for 

commercial species, such as tuna or swordfish. Many of these individuals die as a result 

of not being able to return to the water’s surface to breathe, are injured as they try to free 

themselves, ingest fishing gear that many potential suffocate them or form a blockage in 

their digestive system, or are injured when they are brought onboard the fishing vessel. 

Global estimates predict that over 50,000 leatherback turtles a year are caught as bycatch 

(Lewison et al. 2004). 

 To protect sea turtles from incidental fisheries bycatch, the first step is to identify 

interaction hot-spots between fisheries and turtles. This can be achieved by comparing 

data on the spatio-temporal distribution of both sea turtles and fisheries. In turn, this 

information can be used to determine the most effective methods for minimizing sea 

turtle by-catch. In some instances this may involve spatially- or temporally-explicit 

fisheries closures, restrictions or modifications to fishing gear, or changes in the depth as 

which fishing gear is set. A program called TurtleWatch even devised a program, 

founded on knowledge of the environmental habitat preferences of loggerhead sea turtles 

Caretta caretta, which provides fisheries with daily recommendations on to fish to 

minimize sea turtle bycatch based on remotely-sensed oceanographic conditions (Howell 

et al. 2008). 

 The substantial conservation benefits that may be gained from understanding the 

factors driving the oceanic distribution of leatherback turtles provided the main impetus 
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for this thesis. In the next three sections, I will outline the three aspects of the migratory 

ecology of these species that I will investigate in the subsequent three chapters.  

 

1.3 Chapter 2: Nesting phenology - being in the right place at the right time 

 

The ultimate goal of migration – to maximize (life-time) reproductive output – is 

achieved through optimally managing the time spent in discrete habitats (Cohen 1976). In 

other words, arrival at each location of the migratory cycle should be coordinated with 

periods of favorable conditions, while departure ought to occur before the environment 

becomes too deleterious. The importance of timing in migratory behavior is particularly 

evident in sea turtle nesting phenology.  

Sea turtles nest on sandy tropical and sub-tropical beaches worldwide. Nesting is 

typically seasonal, lasting between 2 to 6 months of each year; however, strong variation 

exists in both the onset and duration of the nesting season between populations (Mazaris 

et al. 2012, Robinson et al. 2014). These differences are probably driven by spatial 

variation in the climatic and oceanographic phenomena that influence the success of 

incubating sea turtle nests. 

Nesting sea turtles bury their eggs at depths between 30 and 80 cm, depending on 

the species. After this, the eggs receive no parental care and so conditions within the nest 

are largely governed by ambient environmental conditions (Hays et al. 2003). Arguably, 

the most important environmental parameter is temperature, and the eggs must remain 

between 24 and 36 °C to hatch successfully (Ackerman 1997, Santidrián Tomillo et al. 

2009). Temperature also dictates the gender of the developing embryos with males being 

produced at lower temperatures and females at higher temperatures (Morreale et al. 

1982). For most species, the pivotal temperate at which 50 % females are produced 

occurs between 27 and 31 °C (Ackerman 1997). Consequently, there are only a small 

range of climatic conditions that can successfully support populations of nesting sea 

turtles (Pike 2013). These generally only occur in the warmest months at temperate or 

sub-tropical latitudes and the coldest-months in equatorial latitudes (Mazaris et al. 2012, 

Robinson et al. 2014). 
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Nest temperatures are understandably tied to local air temperatures, but they are 

also linked to precipitation patterns (Valverde et al. 2010). In fact, local precipitation 

patterns can be a better predictor of hatching success than air temperatures (Santidrián 

Tomillo et al. 2012). This is probably because the rainfall influences sand temperature 

and moisture levels, with the latter having additional impacts on hatching success 

(McGehee 1990). Moisture levels could even alter hatchling fitness, as seen in other 

Testudines (Finkler 1999). 

 Despite the effect that the timing of the nesting season has on the success of the 

incubating eggs, little is known about the mechanisms that turtles use to coordinate the 

timing of the nesting season or their pre-nesting migrations. Some studies have found 

correlations between the onset of the nesting season in loggerhead and green turtles 

Chelonia mydas and sea surface temperature of the waters both near the nesting ground 

and in the foraging areas (Weishampel et al. 2004; Pike et al. 2006; Mazaris et al. 2008; 

Mazaris et al. 2009; Weishampel et al. 2010; Dalleau et al. 2012). However, leatherback 

turtles are uniquely able, among sea turtles, to maintain body temperatures significantly 

elevated above ambient conditions through a series of adaptations termed gigantothermy 

(Paladino et al. 1990, Southwood et al. 2005, Bostrom & Jones 2007). The effect of 

temperature on the nesting phenology of leatherback turtles may therefore be less 

distinct. Moreover, the only published study investigating migratory phenology in 

leatherback turtles identified that the onset of their pre-nesting migrations were more 

closely correlated with surface chl-α concentrations (used as a proxy for food 

availability) at their foraging areas than sea surface temperature (Sherrill-Mix et al. 

2008). These authors concluded that in leatherback turtles the timing of the pre-nesting 

migrations, which in turn dictate the timing of the nesting season, is influenced by 

foraging success. Simply put, animals with higher foraging success are able to acquire the 

necessary resources to nest earlier than animals with lower foraging success. 

 Additional factors that may play an important role in controlling the migratory 

phenology of leatherback turtles, although their effects have not been previously studied, 

are population size or demography. Turtles that have nested previously are known to nest 

earlier than neophyte nesters (Santidrián Tomillo et al. 2009; Rafferty et al. 2011). The 
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ratio of experienced to neophyte nesters in a population could therefore influence the 

timing of the nesting season. Alternatively, many bird species are known to have higher 

mating success when populations are larger and, in turn, this also lead to earlier nesting 

seasons (Ezard et al. 2008, Votier et al. 2009, Doxa et al. 2012). If population size also 

influences nesting phenology in sea turtles the effects could be substantial, especially 

considering that many sea turtle populations world-wide have experienced large declines 

or impressive recoveries in recent years (Spotila et al. 2000; Dutton et al. 2005). 

Interestingly, increases were observed in the population size of many sea turtle 

populations were recent advances have been observed in the timing of the nesting season 

(Weishampel et al 2004; Pike et al. 2006). 

The mechanisms that govern the timing of the nesting season in sea turtles are not 

currently well understood; however, understanding how sea turtle nesting phenology is 

likely to change in the future can play an important role in predicting how sea turtles will 

adapt to climate change. As global temperatures increase, this is likely to lead to 

increasingly female-biased sex ratios in sea turtles (Laloë et al. 2014) and overall 

decreases in hatching success (Santidrián Tomillo et al. 2012), unless sea turtles are able 

to shift the timing of the nesting season towards cooler seasonal conditions. If food 

availability controls the timing of the nesting season, then global shifts may be seen in 

nesting seasons depending on how climate change impacts food supplies. Alternatively, if 

population size or demography is more important than the potential for adaptation may be 

more dependent on other conservation strategies, such as nest shading.  

In Chapter 2, I will investigate the role of food availability and population size on 

the nesting phenology of two major leatherback turtle nesting populations. 

 

1.4 Chapter 3: Behavioral changes during the migratory cycle 

 

Most turtles spend the majority of their time in the upper 200 m of the water 

column (Polovina et al. 2003, Sale et al. 2006, Rice and Balazs 2008), but leatherback 

turtles have been recorded diving to depths of up to 1280 m (Doyle et al. 2008). One of 

the main reasons that leatherback turtles dive to such extreme depths is to search the 
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water-column for diel-migrating gelatinous zooplankton (Houghton et al. 2008). 

Gelatinous zooplankton are the predominant food source for leatherback turtles and due 

to their low-energy content it is estimated leatherback turtles must consume about 100 kg 

per day to survive (Jones et al. 2012). The movement patterns of leatherback turtles are 

therefore intrinsically linked to the distribution of gelatinous zooplankton in the world’s 

oceans (Houghton et al. 2006, Witt et al. 2007). Considering that gelatinous zooplankton 

form a major component of most marine ecosystems (Pauly et al. 2009), often prey on or 

compete with commercially important fish species (Lynam et al. 2006, Kawahara et al. 

2006, Quiñones et al. 2013), and pose risks to human health for beach-goers and 

swimmers (Gershwin et al. 2009), leatherback turtles can function as relevant indicators 

of broad-scale ecosystem functioning and health (Wallace et al. 2006; Fossette et al. 

2010).  

Leatherback turtles are often found associated with dynamic oceanographic 

features, such as fronts or seasonal upwelling sites that promote the formation of mass 

aggregations, or blooms, of gelatinous zooplankton (Shillinger et al. 2011, Dodge et al. 

2014). However, these blooms are largely ephemeral in nature and the exact 

oceanographic conditions required for a bloom to form are not completely understood 

(Graham et al. 2001). In response to such dynamic prey-scapes, leatherback turtles 

conduct flexible foraging migrations that can encompass entire ocean basins (Hays et al. 

2006). These migrations are very different to the common ‘shuttling’ migrations observed 

in loggerhead or green turtles Chelonia mydas, where animals migrate between specific 

locations along a relatively-straight and generally consistent route (Blanco et al. 2012, 

Schofield et al. 2013) and instead have been described as being more akin to a ‘prolonged 

sojourn in a vast feeding area’ (Luschi et al. 2006). 

When analyzing the broad-scale movements of leatherback turtles, many studies 

have employed a range of statistical tools to determine when a switch has occurred from 

migrating to foraging (Eckert 2006, Jonsen et al. 2006; Jonsen et al. 2007; Bailey et al. 

2008). In recent years, this has been most commonly achieved using a Bayesian State-

Space Switching Models (Shillinger et al. 2011, Benson et al. 2011, Dodge et al. 2014). 

These models have the capacity to define a ‘switch’ in an individual’s behavior based on 
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its horizontal movement patterns. Specifically, if an animal has slow horizontal 

movement speeds and large turn angles between subsequent locations it is considered to 

be foraging, while if movement speeds are high and turn angles between subsequent 

locations are low then it considered that the animal is migrating (Jonsen et al. 2007). 

Although this rule is generally true for terrestrial animals (Turchin 1991, Moreales et al. 

1991), it needs to be remembered that diving marine species move in a fully 3D 

environment. Furthermore, it has been demonstrated that changes in diving behavior can 

occur independently of horizontal movement patterns (James et al. 2005, Schick et al. 

2013) and may even provide better indicators of foraging behavior (Sale et al. 2006). As 

a result, there is a need for new statistical tools to be developed that are able to identify 

behavioral shifts in migratory marine species from both their horizontal movement 

patterns and their diving behavior.  

In Chapter 3, I will outline a novel statistical method to achieve this and then 

apply this model to analyze data from satellite-transmitters deployed on nesting 

leatherback turtles within the iSimangaliso Wetland Park, South Africa. 

 

1.5 Chapter 4: Tracking animal movement through multiple methods 

 

 It is almost impossible to visually track movements of marine species over long 

periods of time. As such, the migratory patterns of most marine species were largely 

unknown until the development of animal-borne satellite telemetry devices in the early 

1980s. These devices were able to relay the location of an animal anywhere in the globe, 

but only if the transmitter’s antenna was above the surface of the water. They were 

particularly suited to tracking the movements of air-breathing marine animals as they 

must periodically return to the surface, and the first marine animal to be successfully 

satellite tracked was a loggerhead turtle (Stoneburner 1982, Timko and Kolz 1982). Since 

these early beginnings the use of satellite telemetry to study the movement of marine 

megafauna has expanded exponentially and the variety of species that have been tracked 

in this manner is continually increasing (Hart and Hyrenbach 2009, Graham et al. 2012). 
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 Satellite transmitters have now been deployed on all seven species of sea turtle 

and the insights these devices have provided into the ecology of these species has been 

invaluable (Morreale et al. 1996, Seminoff et al. 2008, Godley et al. 2008, Hawkes et al. 

2012). Yet concurrently a wide range of chemical and isotopic tools have been developed 

that also have the capacity to provide information on the migratory patterns of marine 

megafauna (Burton 2009). Of these, perhaps the most widely used technique is stable 

isotope analysis. The use of stable isotope analysis for animal tracking relies on the 

principle that animals foraging in different locations will incorporate the unique stable 

isotopic signatures of the areas in which they are foraging (Hobson 1999, Rubenstein and 

Hobson 2004). Stable isotope analysis might not be able to currently provide as fine-scale 

tracking information as can be achieved by satellite telemetry, but it does have some 

alternative benefits. Firstly, C and N stable isotope analysis is far cheaper (approx. $10 

per sample) than satellite transmitters (between $1000-5000 per unit). As a result, stable 

isotope analysis is far more suited, than satellite telemetry, for studies that require large 

sample sizes. A second benefit of stable isotope analysis is that they inform you where an 

animal was previously. Consequently, the inferences gained from stable isotope analysis 

should be affected by the sample collection. Lastly, stable isotope analysis can provide 

additional insights into not only the movements of the sampled animal but also its diet 

(Post et al. 2002). 

 Although the vast potential utility of stable isotope analysis in animal tracking, 

the foraging locations of an animal can only be determined by stable isotope analysis if 

the isotopic signatures of different foraging locations are known. In addition, spatial 

patterns in stable isotopic signatures – or isoscapes – of marine megafauna are currently 

only known for a few species in a few regional locations (Graham et al. 2011). To this 

extent, stable isotope analysis often must be validated by combining it with other tracking 

methods, such as satellite telemetry (Seminoff et al. 2012, Ceriani et al. 2013). Once the 

isoscape has been established, it can then help provide information for tracking a wide 

range of animals (Graham et al. 2011) and even provide information on broad-scale 

oceanographic patterns (Wallace et al. 2006).   



10 
 

 In Chapter 4, I will validate the use of stable isotope analysis to track leatherback 

turtle movements in the waters around southern Africa. I will also use the insights 

provided by stable isotope telemetry to infer the potential impacts that high-drag satellite 

telemetry devices have on the migratory behavior of leatherback turtles. 

 

1.6 Summary 

 

 In the following chapters of this thesis, I hope to address a number of knowledge 

gaps concerning the migratory ecology of the leatherback turtle. In Chapter 2, I will 

investigate the effects of food availability and population size on the nesting phenology 

of nesting populations of leatherback turtles in the Atlantic and Pacific Oceans. In 

Chapter 3, I will employ a novel statistical tool for analyzing the movement patterns of 

diving animals to investigate the migratory patterns of post-nesting leatherback turtles 

from the iSimangaliso Wetland Park, South Africa. In Chapter 4, I will validate the use of 

stable isotope analysis for tracking the movement of leatherback turtles around the waters 

of southern Africa and also investigate the potential impacts of high-drag biologging 

devices on the migratory behavior of these animals.  
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CHAPTER 2. MULTIDECADAL TRENDS IN THE NESTING PHENOLOGY OF 

PACIFIC AND ATLANTIC LEATHERBACK TURTLES ARE ASSOCIATED WITH 

POPULATION DEMOGRAPHY 

 

2.1 Abstract 

 

Knowledge of the mechanisms influencing phenology can provide insights into 

the adaptability of species to climate change. Here, I investigated the factors influencing 

multidecadal trends in the nesting phenology of the leatherback turtle Dermochelys 

coriacea at Playa Grande, Costa Rica, in the eastern Pacific Ocean and at Sandy Point, 

US Virgin Islands, in the western Atlantic Ocean. Between 1993 and 2013, the median 

nesting date (MND) at Playa Grande occurred later, at a rate of ~0.3 d yr−1. In contrast, 

between 1982 and 2010, the MND at Sandy Point occurred earlier, at a rate of ~0.17 d 

yr−1. The opposing trends in the MND of each population were not explained by variation 

in the multivariate El Niño-Southern Oscillation index, North Atlantic Oscillation index, 

or Atlantic Multidecadal Oscillation index; however, the MND at Playa Grande was 

significantly correlated with nesting population size. I propose that changes in the ratio of 

earlier-nesting ‘experienced’ turtles to later-nesting neophyte nesters, which are linked to 

the population decline at Playa Grande, and the population recovery at Sandy Point may 

explain the contrasting trends in MNDs. If the observed trends in MND continue into the 

future, the nesting season at Playa Grande will coincide with increasingly adverse 

conditions for hatching success, exacerbating the already detrimental effects of climate 

change. Alternatively, shifts in the nesting phenology may make the Atlantic populations 

more resilient to climate change. Our findings highlight the increasing need for 

conservation efforts for eastern Pacific leatherback turtles to consider climate change 

mitigation practices. 

 



24 
 

2.2 Introduction 

 

As global temperatures continue to rise, there is increasing concern over the 

ability of organisms to adapt to these changes (Hoffmann & Sgrò 2011, Doney et al. 

2012, Pike 2014). A potential plastic response to climate change is a shift in the timing of 

seasonal biological phenomena, termed phenology (Parmesan 2006). By migrating and 

reproducing when seasonal weather patterns are cooler, many migratory species have 

mitigated some of the detrimental effects of a warming climate on reproductive success 

(Møller et al. 2008). Yet such adaptive trends are not universal among species (Both et al. 

2009) or even populations (Gordo 2007). Understanding why different populations 

express divergent responses to climate change requires an understanding of the factors 

governing the phenology of a species (Gienapp et al. 2007). Moreover, such knowledge is 

necessary for developing bioclimatic envelope models with the capacity to accurately 

predict the response of a species to climate change at regional, or even global, scales 

(Guisan & Thuiller 2005). 

Sea turtles nest on tropical and sub-tropical beaches during distinct nesting 

seasons that generally last between 3 and 6 mo. The timing of the nesting season must, at 

least partially, coincide with seasonal temperature and precipitation patterns that create 

suitable conditions for incubating eggs on the beach (Pike 2013). As climate change 

progresses, however, shifts in phenology may be required to maintain the nesting season 

within optimal beach conditions. Indeed, a recent climate-forced population model for the 

eastern Pacific leatherback turtle Dermochelys coriacea predicted that the anticipated 

reduction in hatching success resulting from a warming climate could be partially offset 

if the nesting season shifts to earlier in the year when conditions are cooler and wetter 

(Saba et al. 2012). Incubation temperatures also govern the gender of the developing 

hatchlings, with females being produced at higher temperatures (Binckley et al. 1998). 

Shifts in nesting phenology could therefore have the additional benefit of counteracting 

female-biases in hatchling production (Doody et al. 2006). However, no previous studies 

have investigated whether leatherback turtles are likely to respond to climate change 

though adaptive shifts in nesting phenology. 
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The factors governing nesting phenology have only been investigated for 2 sea 

turtle species: loggerhead turtles Caretta caretta (Weishampel et al. 2004, Pike et al. 

2006, Mazaris et al. 2013) and green turtles Chelonia mydas (Pike 2009, Weishampel et 

al. 2010, Dalleau et al. 2012). For both species, it has been repeatedly shown that the 

timing of the nesting season is influenced by the sea surface temperature of the waters 

near the nesting grounds (e.g. Weishampel et al. 2004, 2010, Mazaris et al. 2008, Dalleau 

et al. 2012). However, leatherback turtles are uniquely able among sea turtles to maintain 

elevated and constant body temperatures through a series of adaptations termed 

gigantothermy (Paladino et al. 1990, Southwood et al. 2005, Bostrom & Jones 2007). The 

effect of temperature on the nesting phenology of leatherback turtles may therefore be 

less distinct. Consequently, determining the factors influencing leatherback nesting 

phenology likely requires the investigation of a broader range of oceanographic variables. 

Furthermore, even though local climate conditions directly affect hatching success 

(Santidrián Tomillo et al. 2009, 2012), environmental conditions at the nesting beach are 

unlikely to govern when a turtle will arrive at the nesting beach, although they may do so 

over long time scales through natural selection (Berteaux et al. 2004). This is because 

leatherback turtles conduct extensive reproductive migrations, and the distance between 

nesting grounds and foraging areas can extend across entire ocean basins (Benson et al. 

2011, Witt et al. 2011). As a result, the nesting grounds are often physically disconnected 

from the climate of the foraging area. 

Leatherback turtles forage exclusively on gelatinous zooplankton, a polyphyletic 

taxon whose distribution is strongly tied to physical oceanographic conditions (Graham et 

al. 2001). As a result, the broad-scale distribution and abundance of gelatinous 

zooplankton are often tied to large oceanographic phenomena, such as the El Niño-

Southern Oscillation (ENSO; Raskoff 2001), North Atlantic Oscillation (NAO; Lynam et 

al. 2004), and the Atlantic Multidecadal Oscillation (AMO; Edwards et al. 2013). In turn, 

such oceanographic phenomena are also inherently linked to foraging success in 

leatherback turtles (Saba et al. 2007, Reina et al. 2009). Moreover, the relationships 

observed between oceanographic conditions and the onset of migration towards the 

nesting grounds has led to the hypothesis that turtles foraging in more productive areas 
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are able to acquire resources more rapidly, allowing them to migrate to their nesting 

grounds earlier (Saba et al. 2007, Sherrill-Mix et al. 2008). In addition, leatherback turtles 

are expected to forage while migrating (Lambardi et al. 2008). Consequently, a decrease 

in food availability en route could result in increased time spent searching for food and a 

longer migration duration. Better foraging conditions could even increase the number of 

clutches that each female lays in the upcoming nesting season. This would extend the 

length of time that each turtle spends at the nesting grounds and may even extend the 

length of the nesting season. 

Beyond the impacts of foraging success, nesting phenology may also be related to 

factors such as population size or structure (Votier et al. 2009, Shirai 2013). In another 

marine migrant, the dalmatian pelican Pelecanus crispus, larger populations nest earlier 

than smaller populations (Doxa et al. 2012). Although the exact mechanism driving this 

phenomena is not well understood, it could be linked to population demographics. In 

many birds, older individuals also tend to nest earlier in the year than younger individuals 

(Hipfner et al. 2010). Similar trends have been observed in leatherback turtles, as older 

and/or more experienced individuals tend to arrive earlier to nest and lay more clutches 

(Santidrián Tomillo et al. 2009, Rafferty et al. 2011). As a result, populations with an 

older mean age may have both earlier and longer lasting nesting seasons (Ezard et al. 

2007). 

In the present study, I investigated the nesting phenology of 2 leatherback turtle 

populations over multiple decades. Firstly, I determined whether there had been a change 

in the timing or length of the nesting season over the study period. Secondly, I 

investigated whether interannual patterns in nesting phenology were influenced by 

oceanographic conditions experienced prior to departing the foraging area, while 

departing the foraging area, during migration, or after arriving at the nesting grounds. 

Thirdly, I investigated whether nesting phenology was affected by population size. 

Lastly, to discern how any shifts in nesting phenology may be influencing the conditions 

experienced by the developing nests, I compared historic trends in nesting phenology to 

local air temperatures and precipitation levels.  
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I obtained data from 2 of the longest tagging programs for nesting leatherback 

turtles: Playa Grande, Costa Rica (10° 20’ N, 85° 51’ W), in the eastern Pacific Ocean 

and Sandy Point, US Virgin Islands (17° 40’ N, 64° 52’ W), in the western Atlantic 

Ocean. I chose these sites because both support long-term (≥ 20 yr) tagging programs, are 

located in separate ocean basins, and have contrasting population trends, with the 

population decreasing at Playa Grande (Santidrián Tomillo et al. 2007, F. V. Paladino 

unpubl. data) and increasing at Sandy Point (Dutton et al. 2005, USFWS unpublished 

data). By investigating 2 distinct populations, I aimed to investigate differences in the 

capacity of leatherback turtles from either the Pacific or Atlantic Ocean to respond to 

climate change via adaptive shifts in nesting phenology. 

 

2.3 Methods 

 

2.3.1 Study sites 

 

Playa Grande is a sandy beach, 3.6 km long, on the Pacific coast of Costa Rica. 

Playa Grande is part of a 3-beach complex, along with nearby Playa Ventanas (1 km 

long) and Playa Langosta (1.3 km), all of which are used by substantial numbers of 

nesting leatherback turtles (Reina et al. 2002). Together, these beaches host an estimated 

70% of the entire leatherback population nesting on the eastern Pacific shores of Costa 

Rica and have the highest density of nesting leatherback turtles in the eastern Pacific 

Ocean. Of these 3 beaches, Playa Grande has supported the longest running monitoring 

program for leatherback turtles (since 1993/94) and has the majority of the nesting 

activity (70 to 90%; Reina et al. 2002). In the present study, I thus exclusively used data 

collected on Playa Grande. 

Sandy Point is a dynamic sandy beach (3.0 km long) on the coast of St. Croix, US 

Virgin Islands, in the Atlantic Ocean. A tagging program for nesting leatherback turtles at 

Sandy Point has been in place since 1978. Even though consistent saturation tagging (the 

concept of identifying every turtle on a specified nesting beach) has only been achieved 
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since 1982, this still remains one of the longest running saturation tagging programs for 

leatherback turtles worldwide. 

 

2.3.2 Nesting dates 

 

At both locations, the nesting season began in the coolest month of the year and 

lasted for approximately 6 mo; at Playa Grande, the nesting season was between October 

and March, while at Sandy Point it was between March and August. Over the nesting 

season, the beaches were patrolled nightly to encounter nesting females as well as to 

count and identify tracks of missed turtles. In this manner, a track was recorded for every 

sea turtle emergence even if the turtle itself was not encountered. 

For logistical reasons, the start and end dates of the monitoring programs differed 

between years. I accounted for this sampling bias by cropping the available datasets to 

include only the longest consistently patrolled sampling period for all of the years in the 

study. For Playa Grande, this was between 1 November and 10 February (a total of 132 

d) from 1994/95 until 2011/12, and for Sandy Point, this was between 1 April and 5 July 

(95 d) from 1982 until 2010. 

Differences in the monitoring methodologies between Playa Grande and Sandy 

Point affected our ability to calculate nightly nesting activity. At Playa Grande, observers 

recorded whether or not a track contained a body-pit, i.e. a large disturbance in the sand 

that is formed during the initial stages of the nesting process. At Playa Grande, around 

10% of the turtles were missed and only a body-pit was seen. Although it is difficult to 

confirm whether a leatherback turtle nested from visual inspection of only its tracks, 

body-pits were readily identifiable from the tracks, and 90% of body pits were shown to 

result in a nest (Reina et al. 2002). Consequently, I used body-pit counts as our measure 

of nesting activity at Playa Grande. At Sandy Point, it was not the practice to record from 

a track whether a body-pit was made or not. Therefore, I used confirmed nest counts 

(where the turtle was witnessed laying) as our measure of nesting activity at Sandy Point. 

At this location, less than 5% of turtles were missed each year. 
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Using the daily body-pit counts at Playa Grande and daily nest counts at Sandy 

Point, I calculated the median nesting date (MND). One day was added to the median 

nesting date during each leap year. I also calculated the standard deviation of the mean 

nesting date. I termed this measure the central tendency of the nesting season (CTns). As 

the distribution of nesting activity in sea turtle nesting seasons can be roughly fit to a 

normal distribution (Girondot et al. 2007), the CTns could be used as a proxy for the 

length of the nesting season. 

 

2.3.3 Ocean conditions 

 

I compared the MND and CTns to the multivariate ENSO index (MEI) for turtles 

nesting at Playa Grande, and to the NAO and AMO indices for turtles nesting at Sandy 

Point. These oceanographic indices provide a univariate representation of oceanographic 

conditions within the Pacific or Atlantic Oceans. Values for the MEI, NAO, and AMO 

were accessed from www.esrl.noaa.gov/psd/enso/mei/, 

www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao_index.html, and 

www.esrl.noaa.gov/psd/data/correlation/amon.us.data, respectively. 

To determine whether oceanographic conditions influence the MND and CTns, 

we chose to average the MEI or NAO over discrete periods of time that would best 

coincide with different parts of the migratory cycle. To this extent, I averaged the MEI 

and NAO over 4 discrete 3 mo periods that encompassed the year preceding the month of 

peak nesting, which was December for Playa Grande and May for Sandy Point. From 

earliest to latest, the 3 mo periods represented the conditions (1) before departure from 

the foraging areas, (2) during departure from the foraging areas, (3) during migration 

from foraging to nesting grounds, and (4) upon arrival at the nesting grounds. These 3 mo 

time periods were chosen because post-nesting leatherback turtles require between 2 and 

6 mo to reach their foraging areas (James et al. 2005, Shillinger et al. 2008). Thus I 

assumed that the pre-nesting migrations would take a similar length of time and 

individuals would remain in their foraging grounds for many months before returning to 
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their nesting areas. Furthermore, the nesting seasons at Playa Grande and Sandy Point 

last around 6 mo, with the majority of turtles arriving in the first 3 mo. 

 

2.3.4 Population size 

 

At Playa Grande and Sandy Point, passive integrated transponder (PIT) tags with 

unique ID numbers were implanted into every turtle encountered over the nesting season. 

As leatherback turtles nest an average of 7 times per nesting season (Reina et al. 2002) 

and there was a ~90 to 95% encounter rate for nesting turtles at Playa Grande and Sandy 

Point, respectively, there is only a nominal probability that a turtle would be missed in a 

given season. Thus, these tagging data provide an accurate representation of the number 

of nesting individuals each year. 

 

2.3.5 Local air temperature and rainfall 

 

Monthly air temperatures and rainfall for Playa Grande and Sandy Point were 

obtained from the Daniel Oduber Quiros International Airport (44 km from the nesting 

site) via the National Meteorological Institute of Costa Rica. For Sandy Point, these data 

were obtained from the Christiansted Hamilton Field Airport (10 km from the nesting 

site) via www. ncdc.noaa.gov/cdo-

web/datasets/GHCNDMS/stations/GHCND:VQW00011624/detail. I calculated the mean 

monthly air temperature and total precipitation over the 6 mo nesting season. 

 

 

2.3.6 Statistical analyses 

 

I tested whether there had been a change in the MND, CTns, local air 

temperature, or local precipitation over the study period using least-squares linear 

regression. To compare the effects of ocean conditions before departure from foraging 

areas, ocean conditions during departure from foraging areas, ocean conditions during 
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migration to nesting grounds, ocean condition on arrival at nesting grounds, and nesting 

population size on the MND and CTns, I used a generalized linear model with a Gaussian 

variance function and an identity link function. I compared these models using Akaike’s 

information criterion (AIC). Data were analysed using program R (R Development Core 

Team). For all statistical tests, α = 0.05. 

 

2.4 Results 

 

At Playa Grande between 1993–94 and 2012–13, the MND shifted to later in the 

season at a rate of approximately 0.31 d yr−1, totaling a shift of 6 d (Fig. 1a). This shift 

was close to statistical significance (r2 = 0.17; p = 0.07). The MND was highly variable 

with a range of 17 d. Much of this range was attributed to atypically late MNDs that 

occurred in 1993–94, 2002–03, and 2008–09. At Sandy Point, the MND shifted to earlier 

in the season at a rate of approximately 0.17 d yr−1, totaling a shift of 5 d over 29 yr (Fig. 

1c). While this shift was smaller than that at Playa Grande, it was statistically significant 

(r2 = 0.14, p < 0.01). The total range of MNDs at Sandy Point was 14 d.  

I found no significant correlations between the MND at Playa Grande and the 

MEI, yet there was a significant negative correlation between population size and the 

MND at Playa Grande (p < 0.01; Table 1; Fig. 2a). Furthermore, the AIC indicated that 

the best model for predicting MND included population size as the only variable (Table 

2). No significant correlations were found between the MND at Sandy Point and the 

NAO, AMO, or population size (Table 1). 

At both locations, the CTns showed no significant change over time (Playa 

Grande: r2 = 0.02, p = 0.53; Sandy Point: r2 = 0.04, p = 0.32; Fig. 1d). However, 

significant negative correlations were observed between the CTns at Playa Grande and 

the MEI during migration (p = 0.03) and the CTns at Sandy Point and the NAO during 

departure (p < 0.01; Table 1, Fig. 3a,b). 

At Playa Grande, neither local air temperatures (r2 < 0.01, p = 0.77) nor 

precipitation levels (r2 < 0.01, p = 0.97) showed any significant changes over the study 

period (see Fig. 4). The local air temperatures at Sandy Point decreased significantly (r2 = 
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0.28, p < 0.01), but the observed decrease in precipitation levels was not significant (r2 = 

0.04, p = 0.22).  

At both sites, there was a large change in the size of the nesting population over 

the study period, which was evident beyond the substantial interannual fluctuations. The 

number of turtles nesting per year at Playa Grande decreased from ~300 at the beginning 

of this study to ~30 at the end. In contrast, the number of turtles nesting per year at Sandy 

Point increased from ~20 to ~150. 

 

2.5 Discussion 

 

Here, I examined multidecadal trends in the nesting phenology of 2 populations of 

leatherback turtles inhabiting different ocean basins. To determine which factors govern 

nesting phenology for each population, I compared the observed trends in MND and 

CTns to ocean conditions experienced at different phases of migration as well as nesting 

population size. I also compared past trends in the MND to conditions at the nesting 

beach, to determine how such phenological changes may affect conditions for incubating 

nests. This information provided insights into the capacity of different leatherback turtle 

populations to adapt to future climate change through shifts in the timing of the nesting 

season. 

Over the study period, the MND at Playa Grande occurred later, at a rate of 0.31 d 

yr−1. In contrast, the MND at Sandy Point occurred earlier, at a rate of 0.17 d yr−1. Such 

shifts in nesting phenology are relatively slow compared to other sea turtle species at 

higher-latitude nesting beaches (e.g. Weishampel et al. 2004, Pike et al. 2006, Mazaris et 

al. 2013). Moreover, the shift observed at Playa Grande is the first time a shift for nesting 

late in the year has been reported for any sea turtle population. 

The strongest correlation with MND was observed between nesting population 

size and MND at Playa Grande. Although the shift in the nesting phenology at Playa 

Grande over time was not significant, this trend is likely to continue if the nesting 

population size is indeed affecting nesting phenology and population size continues to 

decline. However, no significant correlation was observed between nesting population 
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size and the MND at Sandy Point. I therefore hypothesize that the changes in nesting 

phenology may not be driven specifically by nesting population size, but by changes in 

nesting population demography. Specifically, the trends may be caused by changes in the 

ratio of younger and later nesting turtles to more experienced, and earlier nesting, turtles. 

Between the mid-1970s and early 1990s, approximately 90% of all the eggs laid at Playa 

Grande were poached (Santidrián Tomillo et al. 2008). As leatherback turtles are 

estimated to reach sexual maturity between 9 and 16 yr (Zug & Parham 1996, Jones et al. 

2011), the resulting ‘missing’ generation should have begun nesting between the mid-

1980s and early 2000s. Consequently, in 1993 at Playa Grande, the beginning of our 

study period, a large portion of the younger and later nesting individuals were absent. Yet 

over time, as the hatchlings from nests protected from poaching became reproductively 

mature, this younger generation of nesting turtles should again reappear in the population 

and this should shift the MND to later in the year. This shift in the average age of the 

population at Playa Grande may even be compounded by the increasingly high levels of 

adult mortality suffered by this population due to incidental take by fisheries (Spotila et 

al. 2000, Lewison et al. 2004), which would also reduce the average age of the 

population. In contrast, at Sandy Point, there has been a marked increase in the 

population of nesting leatherback turtles since the early 1980s (Dutton et al. 2005). As 

this increase was largely a product of increased recruitment into the population, the 

average age of the nesting population has probably remained low or only increased 

slightly, thus potentially explaining the lack of a correlation between nesting population 

size and MND at Sandy Point. 

At both Playa Grande and Sandy Point, I found no correlation between the MND 

and any of the chosen oceanographic indices. Such results are surprising considering that 

oceanographic conditions have previously been linked to the departure date of prenesting 

leatherback turtles from their foraging areas in the waters of eastern Canada (Sherrill-Mix 

et al. 2008). However, that study investigated satellite-tracked individuals and thus was 

able to examine the oceanographic conditions directly at the animal’s location. In our 

study, I did not know the exact location of the turtles prior to nesting so I chose to use 

indices that provide a coarse representation of ocean conditions over entire ocean basins, 
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specifically the MEI, NAO, and AMO. Our decision to use such broad-scale 

oceanographic factors may have masked the actual effect of ocean conditions on the 

MND. Thus, I recommend that future studies attempt to focus their investigation onto 

areas within known high-use leatherback turtle habitats, such as the eastern portion of the 

South Pacific Gyre for turtles from Playa Grande (Shillinger et al. 2011) or the waters of 

eastern Canada for the turtles from Sandy Point (Fossette et al. 2010). 

The only correlations I found between oceanographic conditions and nesting 

phenology were between the MEI and NAO with the CTns of nesting season at Playa 

Grande and Sandy Point, respectively. Specifically, CTns at Playa Grande was negatively 

correlated with the MEI during the migration period, and CTns at Sandy Point was 

negatively correlated with the NAO during the departure period. Positive values of the 

MEI are generally associated with lower food availability for leatherback turtles in the 

Pacific Ocean (Saba et al. 2007, Reina et al. 2009), and similar patterns might also be true 

for the NAO in the Atlantic Ocean (Attrill et al. 2007). When less food is available to 

pre-nesting turtles, they might not be able to brood as many eggs and thus lay fewer 

clutches on arrival at the nesting grounds, leading to a shorter nesting season. 

Alternatively, if food is more patchily distributed then this could also lead to greater 

variation in departure dates and, in turn, also arrival dates. 

 

2.5.1 Conservation implications 

 

At both Playa Grande and Sandy Point, beach temperatures increase over the season 

(Santidrián Tomillo et al. 2009; see Fig. 5). Consequently, nests laid later in the season 

are exposed to hotter and drier conditions and this leads to female-skewed sex ratios, 

lower hatching success, and reduced emergence rates (Santidrián Tomillo et al. 2009). At 

Playa Grande, where the nesting season is shifting to later in the year, this means that an 

increasing portion of the population will experience fatally hot and dry conditions, and 

hatchling output will decrease. Furthermore, those hatchlings that are produced will be 

increasingly female. Even though no increase in local temperature has been recorded over 

the past 20 yr, female-skewed sex ratios and declines in hatchling output are likely to be 
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further exacerbated by future climate change (Santidrián Tomillo et al. 2012) as global 

temperatures are expected to increase by approximately 2°C before the end of this 

century (Stocker et al. 2013). 

In contrast to the leatherback turtles nesting in Playa Grande, those nesting at 

Sandy Point may be able to better persist under conditions of climate change due to the 

observed shifts in nesting phenology. Indeed, so far the MND at Sandy Point is shifting 

towards cooler conditions at the beginning of the nesting season. Local air temperatures 

have even decreased over the past 29 yr. However, this does not mean that populations at 

Sandy Point are safe from the effect of climate change over long time scales. Shifts in 

nesting phenology may not continue indefinitely if they are ultimately controlled by 

demography, and even the lowest seasonal temperatures will eventually rise if current 

trends persist with climate change. 

If population demography does have a significant influence on nesting phenology, 

a method to facilitate beneficial shifts in nesting phenology may be possible. Specifically, 

conservation efforts that focus on reducing adult mortality may have the additional 

benefit of increasing the average age of the nesting population. More experienced, older 

individuals also tend to nest earlier and so this could shift the MND to earlier in the year. 

Yet it must be noted that the shifts observed in our study are small and, thus, shifts in 

nesting phenology may not be rapid enough to offset the future impacts of rapid climate 

change. Instead, the conservation of leatherback turtles, especially in the Pacific Ocean 

where populations are already severely depleted (Spotila et al. 2000, Tapilatu et al. 2013), 

may have to rely on additional proactive measures to reduce incubation temperatures for 

eggs through direct manipulation of environmental conditions, e.g. watering or shading 

nests (Patino-Martinez et al. 2012). 

 

 

 

 

 

 



36 
 

2.6 Literature cited 

 

Attrill MJ, Wright J, Edwards M (2007) Climate-related increases in jellyfish frequency 

suggest a more gelatinous future for the North Sea. Limnol Oceanogr 52: 480−485 

 

Benson SR, Eguchi T, Foley DG, Forney KA and others (2011) Large-scale movements 

and high-use areas of western Pacific leatherback turtles, Dermochelys coriacea. 

Ecosphere 2: art84 

 

Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate 

change: can Arctic life count on evolution? Integr Comp Biol 44: 140−151 

 

Binckley CA, Spotila JR, Wilson KS, Paladino FV (1998) Sex determination and sex 

ratios of Pacific leatherback turtles Dermochelys coriacea. Copeia 1998: 291−300 

 

Bostrom BL, Jones DR (2007) Exercise warms adult leatherback turtles. Comp Biochem 

Physiol A Mol Integr Physiol 147:323-331 

 

Both C, Van Asch M, Bijlsma RG, Van Den Burg AB, Visser ME (2009) Climate change 

and unequal phonological changes across four trophic levels: constraints or adaptations? J 

Anim Ecol 78:73-83 

 

Dalleau M, Ciccione S, Mortimer JA, Garnier J, Benhamou S, Bourjea J (2012) Nesting 

phenology of marine turtles: insights from a regional comparative analysis on green turtle 

(Chelonia mydas). PLoS ONE 7: e46920 

 

Doney SC, Ruckelshaus M, Duffy JE, Barry JP and others (2012) Climate change 

impacts on marine ecosystems. Annu Rev Mar Sci 4: 11−37 

 



37 
 

Doody JS, Guarino E, Georges A, Corey C, Murray G, Ewert M (2006) Nesting site 

choice compensates for climate effects on sex ratios in a lizard with environmental sex 

determination. Evol Ecol 20: 307−330 

 

Doxa A, Robert A, Crivelli A, Catsadorakis G and others (2012) Shifts in breeding 

phenology as a response to population size and climate change: a comparison between 

short- and long-distance migrant species. Auk 129: 753−762 

 

Dutton DL, Dutton PH, Chaloupka M, Boulon RH (2005) Increase of a Caribbean 

leatherback turtle Dermochelys coriacea nesting population linked to long-term nest 

protection. Biol Conserv 126: 186−194 

 

Edwards M, Beaugrand G, Helaouët P, Alheit J, Coombs S (2013) Marine ecosystem 

response to the Atlantic Multidecadal Oscillation. PLoS ONE 8:e57212 

 

Ezard THG, Becker PH, Coulson T (2007) Correlations between age, phenotype, and 

individual contribution to population growth in common terns. Ecology 88:2496-2504 

 

Fossette S, Girard C, López-Mendilaharsu M, Miller P and others (2010) Atlantic 

leatherback migratory paths and temporary residence areas. PLoS ONE 5:e13908 

 

Gienapp P, Leimu R, Merilä J (2007) Responses to climate change in avian migration 

time—microevolution versus phenotypic plasticity. Clim Res 35: 25−35 

 

Girondot M, Godfrey MH, Ponge L, Rivalan P (2007) Modeling approaches to quantify 

leatherback nesting trends in French Guiana and Suriname. Chelonian Conserv Biol 6:37-

46 

 

Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate 

effects on avian migratory phenology. Clim Res 35: 37−58 



38 
 

Graham WM, Pagès F, Hamner WM (2001) A physical context for gelatinous 

zooplankton aggregations: a review. Hydrobiologia 451:199-212 

 

Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple 

habitat models. Ecol Lett 8:993-1009 

 

Hipfner JM, McFarlane-Tranquilla LA, Addison B (2010) Experimental evidence that 

both timing and parental quality affect breeding success in a zooplanktivorous seabird. 

Auk 127:195-203 

 

Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 

470:479-485 

 

James MC, Myers RA, Ottensmeyer CA (2005) Behaviour of leatherback sea turtles, 

Dermochelys coriacea, during the migratory cycle. Proc R Soc Lond B Biol Sci 

272:1547-1555 

 

Jones TT, Hastings MD, Bostrom BL, Pauly D, Jones DR (2011) Growth of captive 

leatherback turtles, Dermochelys coriacea, with inferences on growth in the wild: 

implications for population decline and recovery. J Exp Mar Biol Ecol 399:84-92 

 

Lambardi P, Lutjeharms JRE, Mencacci R, Hays GC, Luschi P (2008) Influence of ocean 

currents on long-distance movement of leatherback sea turtles in the Southwest Indian 

Ocean. Mar Ecol Prog Ser 353:289-301 

 

Lewison RL, Crowder LB, Freeman S (2004) Quantifying the effects of fisheries on 

threatened species: the impact of pelagic longlines on loggerhead and leatherback sea 

turtles. Ecol Lett 7:221-231 

 



39 
 

Lynam CP, Hay SJ, Brierly AS (2004) Interannual variability in abundance of North Sea 

jellyfish and links to the North Atlantic Oscillation. Limnol Oceanogr 49:637-643 

 

Mazaris AD, Kallimanis AS, Sgardelis SP, Pantis JD (2008) Do long-term changes in sea 

surface temperature at the breeding areas affect the breeding dates and reproductive 

performance of Mediterranean loggerhead turtles? Implications for climate change. J Exp 

Mar Biol Ecol 367:219-226 

 

Mazaris AD, Kallimanis AS, Pantis JD, Hays GC (2013) Phenological response of sea 

turtles to environmental variation across a species’ northern range. Proc R Soc Lond B 

Biol Sci 280:20122397 

 

Møller AP, Rubolini D, Lehikoinen E (2008) Populations of migratory bird species that 

did not show a phonological response to climate change are declining. Proc Natl Acad 

Sci USA 105:16195-16200 

 

Paladino FV, O’Connor MP, Spotila JR (1990) Metabolism of leatherback turtles, 

gigantothermy and thermoregulation of dinosaurs. Nature 344:858-860 

 

Parmesan C (2006) Ecological and evolutionary responses to recent climate change. 

Annu Rev Ecol Evol Syst 37:637-669 

 

Patino-Martinez J, Marco A, Quiñones L, Hawkes L (2012) A potential tool to mitigate 

the impacts of climate change to the Caribbean leatherback sea turtle. Glob Change Biol 

18:401-411 

 

Pike DA (2009) Do green turtles modify their nesting seasons in response to 

environmental temperature? Chelonian Conserv Biol 8:43-47 

 



40 
 

Pike DA (2013) Climate influences the global distribution of sea turtle nesting. Glob Ecol 

Biogeogr 22:555-556 

 

Pike DA (2014) Forecasting the viability of sea turtle eggs in a warming world. Glob 

Change Biol 20:7-15 

 

Pike DA, Antworth RL, Stiner JC (2006) Earlier nesting contributes to short nesting 

seasons for the loggerhead sea turtle, Caretta caretta. J Herpetol 40:91-94 

 

Rafferty AR, Santidrián Tomillo P, Spotila JR, Paladino FV, Reina RD (2011) 

Embryonic death is linked to maternal identity in the leatherback turtle (Dermochelys 

coriacea). PLoS ONE 6:e21038 

 

Raskoff K (2001) The impact of El Niño events on populations of mesopelagic 

hydromedusae. Hydrobiologia 451:121-129 

 

Reina RD, Mayor PA, Spotila JR, Piedra R, Paladino FV (2002) Nesting ecology of the 

leatherback turtle, Dermochelys coriacea, at Parque Nacional Marino Las Baulas, Costa 

Rica: 1988-1989 to 1999-2000. Copeia 2002:653-664 

 

Reina RD, Spotila JR, Paladino FV, Dunham AE (2009) Changed reproductive schedule 

of eastern Pacific leatherback turtles Dermochelys coriacea following the 1997−98 El 

Niño to La Niña transition. Endang Species Res 7:155-161 

 

Saba VS, Santidrián-Tomillo P, Reina RD, Spotila JR, Musick JA, Evans DA, Paladino 

FV (2007) The effect of the El Niño Southern Oscillation on the reproductive frequency 

of eastern Pacific leatherback turtles. J Appl Ecol 44:395-404 

 



41 
 

Saba VS, Stock CA, Spotila JR, Paladino FV, Santidrián Tomillo P (2012) Projected 

response of an endangered marine turtle population to climate change. Nature Clim 

Change 2:814-820 

 

Santidrián Tomillo P, Vélez E, Reina RD, Piedra R, Paladino FV, Spotila JR (2007) 

Reassessment of the leatherback turtle (Dermochelys coriacea) nesting population at 

Parque Nacional Marino Las Baulas, Costa Rica: effects of conservation efforts. 

Chelonian Conserv Biol 6:54-62 

 

Santidrián Tomillo P, Saba VS, Piedra R, Paladino FV, Spotila JR (2008) Effects of 

illegal harvest of eggs on the population decline of leatherback turtles in Las Baulas 

Marine National Park, Costa Rica. Conserv Biol 22:1216-1224 

 

Santidrián Tomillo P, Suss JS, Wallace BP, Magrini KD, Blanco G, Paladino FV, Spotila 

JR (2009) Influence of emergence success on the annual reproductive output of 

leatherback turtles. Mar Biol 156:2021-2031 

 

Santidrián Tomillo P, Saba VS, Blanco GS, Stock CA, Paladino FV, Spotila JR (2012) 

Climate driven egg and hatchling mortality threatens survival of Eastern Pacific 

leatherback turtles. PLoS ONE 7:e37602 

 

Sherrill-Mix SC, James MC, Myers RA (2008) Migration cues and timing in leatherback 

sea turtles. Behav Ecol 19:231-236 

 

Shillinger GL, Palacios DM, Bailey H, Bograd SJ and others (2008) Persistent 

leatherback turtle migrations present opportunities for conservation. PLoS Biol 6:e171 

 

Shillinger GL, Swithenbank AM, Bailey H, Bograd SJ and others (2011) Vertical and 

horizontal habitat preferences of post-nesting leatherback turtles in the South Pacific 

Ocean. Mar Ecol Prog Ser 422:275-289 



42 
 

Shirai T (2013) Colony development and density-dependent processes in breeding grey 

herons. Int J Zool 13:404065 

 

Southwood AL, Andrews RD, Paladino FV, Jones DR (2005) Effects of diving and 

swimming behavior on body temperatures of Pacific leatherback turtles in tropical seas. 

Physiol Biochem Zool 78:285-297 

 

Spotila JR, Reina RD, Steyermark AC, Plotkin PT, Paladino FV (2000) Pacific 

leatherback turtles face extinction. Nature 405:529−530 

 

Stocker TF, Qin D, Plattner GK, Tignor MMB and others (eds) (2013) Climate Change 

2013: the physical science basis. Working Group I contribution to the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change. Available at 

www.ipcc.ch/report/ar5/wg1/ 

 

Tapilatu RF, Dutton PH, Tiwari M, Wibbels T, Ferdinandus HV, Iwanggin WG, Nugroho 

BH (2013) Long-term decline of the western Pacific leatherback, Dermochelys coriacea: 

a globally important sea turtle population. Ecosphere 4:art25. 

 

Votier SC, Hatchwell BJ, Mears M, Birkhead TR (2009) Changes in the timing of egg-

laying of a colonial seabird in relation to population size and environmental conditions. 

Mar Ecol Prog Ser 393:225-233 

 

Weishampel JF, Bagley DA, Ehrhart LM (2004) Earlier nesting by loggerhead sea turtles 

following sea surface warming. Glob Change Biol 10:1424-1427 

 

Weishampel JF, Bagley DA, Ehrhart LM, Weishampel AC (2010) Nesting phenologies 

of two sympatric sea turtle species related to sea surface temperatures. Endang Species 

Res 12:41-47 

 



43 
 

Witt MJ, Bonguno EA, Broderick AC, Coyne MS and others (2011) Tracking 

leatherback turtles from the world’s largest rookery: assessing threats across the South 

Atlantic. Proc R Soc Lond B Biol Sci 278:2338-2347 

 

Zug GR, Parham J (1996) Age and growth in leatherback turtles, Dermochelys coriacea 

(Testudines: Dermochelyidae): a skeletochronological analysis. Chelonian Conserv Biol 

2:244-249 

 

 

 

 

 

 



 

  

4
4
 

2.7 Tables 

Table 2.7.1 Comparison of median nesting date (MND) and central tendency of the nesting season (CTns; see ‘Materials and 

methods: Nesting dates’) for leatherback turtles Dermochelys coriacea at Playa Grande, Costa Rica (Pacific Ocean), and Sandy 

Point, US Virgin Islands (Atlantic Ocean), to oceanographic conditions and population size using a generalized linear model 

with a Gaussian variance function and an identity link function. MEI: Multivariate El Niño-Southern Oscillation index; NAO: 

North Atlantic Oscillation index; AMO: Atlantic Multidecadal Oscillation index. Each index was averaged over periods that 

represented the time before departure from the foraging area, during departure from the foraging area, during migration 

between foraging and nesting areas, and upon arrival at the nesting areas. Asterisks (*) denote a significant correlation (p < 

0.05). 

 

 

 

 Variable Playa Grande –––––––––Sandy Point––––––––– 

 –––MEI––– –––NAO––– –––AMO––– 

 t p t p t p 

MND       

Before departure - 0.07 0.95 0.71 0.72 < 0.01 0.93 

Departure   0.50 0.63 0.06 0.06 0.02 0.45 

Migrating - 0.29 0.78 0.39 0.39 0.03 0.38 

Arrival - 0.32 0.75 0.60 0.60 0.08 0.14 

Combined - 0.30 0.77 0.94 0.94 0.07 0.15 

Population size - 3.39 < 0.01* 0.67 0.57   

CTns   

Before departure - 0.51 0.64 0.94 0.17 0.18 0.74 

Departure - 1.03 0.32 0.43 < 0.01* 0.12 0.93 

Migrating - 2.35 0.03* 0.37 0.10 0.21 0.62 

Arrival - 1.96 0.07 0.14 0.99 0.12 0.94 

Combined - 1.59 0.13 0.14 0.21 0.12 0.87 

Population size - 1.93 0.07 1.05 0.41   
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Table 2.7.2 Akaike’s Information Criterion (AIC) for each model comparing oceanographic conditions or population size of 

leatherback sea turtles Dermochelys coriacea to median nesting date (MND) or to the central tendency of the nesting season 

(CTns). AIC values are presented for models including only a single parameter (oceanographic conditions: before departure 

from the foraging area, during departure from the foraging area, during migration between foraging and nesting areas, and 

upon arrival at the nesting areas; or population size) and for models with 2 parameters (oceanographic conditions and 

population size). Lowest values for AIC denote the best model and are indicated with an asterisk (*). Nesting locations are 

Playa Grande, Costa Rica (Pacific Ocean), and Sandy Point, US Virgin Islands (Atlantic Ocean). MEI: Multivariate El Niño-

Southern Oscillation index; NAO: North Atlantic Oscillation index; AMO: Atlantic Multidecadal Oscillation index. 

 

 ––––––Playa Grande–––––– ––––––––––––––––––––Sandy Point–––––––––––––––––––– 

 –––––––––MEI––––––––– ––––––––––NAO–––––––––– ––––––––––AMO––––––––––– 

Model AIC (Single 

parameter 

model) 

AIC (Model w/ 

population size) 

AIC (Single 

parameter 

model) 

AIC (Model w/ 

population size) 

AIC (Single 

parameter 

model) 

AIC (Model w/ 

population size) 

MND       

Before Departure 121.47 111.04 160.44 162.18 160.58 162.17 

Departure 121.20 109.92 156.69* 157.55 159.92 161.91 

Migrating 121.39 111.03 159.78 161.54 159.72 161.69 

Arrival 121.36 111.01 160.29 162.01 158.14* 160.13 

Combined 121.38 111.08 160.58 162.20 158.14* 160.21 

Population Size 109.08*  160.22 160.95 159.61  

CTns       

Before Departure 48.47 46.45 82.24 83.45 85.64 84.98 

Departure 47.62 45.99 79.54* 82.86 85.24 85.21 

Migrating 43.41* 43.45 83.54 84.28 85.14* 84.75 

Arrival 44.91 43.76 84.25 83.65 85.78 85.69 

Combined 46.13 44.62 83.55 82.41 85.69 84.59 

Population Size 44.99  84.21  84.58  
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2.8 Figures 
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Fig. 2.8.1 Interannual trends in (a,c) the median nesting date (MND) and (b,d) the central tendency of the nesting season 

(CTns; see ‘Materials and methods: Nesting dates’) for leatherback turtles Dermochelys coriacea at (a,b) Playa Grande 

(Pacific Ocean) and (c,d) Sandy Point (Atlantic Ocean). Dashed lines represent linear least-squares trendlines. 

 

 

Fig. 2.8.2 Comparison of the median nesting date (MND) of leatherback turtles Dermochelys coriacea to nesting population 

size at (a) Playa Grande (Pacific Ocean) and (b) Sandy Point (Atlantic Ocean). Dashed lines represent linear least-squares 

trendlines. 
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Fig. 2.8.3 Comparison of the central tendency of the nesting season CTns for leatherback turtles Dermochelys coriacea and 

oceanographic conditions during specific sections of their post-nesting migrations. (a) At Playa Grande, the comparison 

between the contrary tendency of the nesting season and the multivariate El Niño-Southern Oscillation index (MEI) during the 

migration between foraging areas and nesting grounds is shown. (b) At Sandy Point, the comparison between the contrary 

tendency of the nesting season and the North Atlantic Oscillation (NAO) index during departure from the foraging areas is 

shown. Dashed lines represent linear least-squares trendlines. 
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Fig. 2.8.4 Mean air temperature (dots) and total precipitation (bars) over the leatherback sea turtle Dermochelys coriacea 

nesting seasons at Playa Grande (October to March) and Sandy Point (March to August). Data for Playa Grande were obtained 

from the Daniel Oduber Quiros International Airport, 44 km from the nesting beach. Data for Sandy Point were obtained from 

the Christiansted Hamilton Field Airport, 10 km from the nesting beach. Dashed lines represent linear least-squares trendlines. 
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Fig. 2.8.5 Average monthly air temperatures from the Christiansted Hamilton Field Airport, 10 km from Sandy Point, during 

the leatherback sea turtle Dermochelys coriacea nesting season. Data are from 2008 until 2010.
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CHAPTER 3. MIGRATORY MOVEMENTS AND DIVING BEHAVIOR OF 

LEATHERBACK TURTLES AROUND SOUTHERN AFRICA: EMPLOYING A 

NOVEL CHANGEPOINT ANALYSIS MODEL TO IDENTIFY BEHAVIORAL 

CHANGES IN BIOTELEMETRY DATA 

 

3.1 Abstract 

 

Maximising the insights that we can gain from the use of novel telemetry devices 

requires the simultaneous development of novel methods for analyzing the resulting data. 

Here, I describe a model based around Changepoint Analysis that has the capacity to 

identify behavioral shifts in migrating marine animals by simultaneously analyzing 

patterns in both horizontal and vertical (diving) movement patterns. I apply this model to 

investigate the movement patterns of 16 leatherback turtles Dermochelys coriacea 

tracked from their nesting beaches in the iSimangaliso Wetland Park, South Africa. Post-

nesting leatherback turtles migrated to either pelagic foraging areas in the Western Indian 

or South Atlantic Ocean or, previously undescribed, coastal foraging areas in the 

Mozambique Channel. The foraging patterns of pelagic individuals were strongly 

associated with ephemeral mesoscale eddies, while those of ‘coastal’ individual were 

strongly associated with net primary productivity. Nevertheless, all individuals made 

comparable changes in dive behavior when reaching a foraging area, which suggests that 

diving behavior is an important metric when identifying foraging behaviour. Unlike the 

pelagic individuals, the coastal cohort remained with the Exclusive Economic Zones of 

South Africa and Mozambique. Furthermore, on reaching their foraging areas they 

remained resident within areas generally less than 50 km2 for the remainder of the 

tracking duration. Thus, these coastal individuals could provide a unique opportunity for 

focused conservation measures.
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3.2 Introduction 

 

Establishing the movement patterns of free-ranging animals is imperative to 

understanding their behavior and ecology, and is often necessary for designing 

conservation strategies (Liedvogel et al. 2014). Today, the movements of almost any 

animal can be tracked as long as they are large enough to carry a satellite transmitter 

(Hart and Hyrenbach 2009, Bridge et al. 2011). In addition, telemetry devices are 

increasingly being fitted with arrays of sensors able to record and relay auxiliary 

biological information, such as body temperature or heart-beat rate (Cooke et al. 2004, 

Evans et al. 2012). The scope of the data that can be gathered from modern biotelemetry 

devices is extensive (Payne et al. 2014); however, maximizing the ecological insights that 

can be gained from the use of such devices often requires the development of equally 

novel methods for analyzing the resulting data (Jonsen et al. 2003, Shepard et al. 2008). 

As animals move through heterogeneous landscapes, their movement patterns 

change depending on local conditions (Lima and Zollner 1996, Firle et al. 1998). To 

understand an animal’s long-term movement patterns therefore requires statistical 

techniques for delineating between behavioral states, such as transiting or foraging 

(Morales et al. 2004, Gurarie et al. 2009, Jonsen et al. 2012). This can be achieved using 

a Switching State-Space Model (SSSM) and the use of these tools has rapidly proliferated 

in recent years, especially when analyzing the movement of marine megafauna (Patterson 

et al. 2008, Hart and Hyrenbach 2009, Jonsen et al. 2012). SSSMs are statistically robust 

tools for identifying transitions between discrete behavioral-states, while also accounting 

for the measurement error and opportunistic data recovery inherent in satellite telemetry 

(Jonsen et al. 2005, Jonsen et al. 2007). 

Most SSSM analyses of animal tracking data use movement speed and turn angle 

to discriminate between Area Restricted Search (ARS) behavior – often considered a 

proxy for foraging – and transiting behavior (e.g. Benson et al. 2011, Shillinger et al. 

2011, Bailey et al. 2012a, Dodge et al. 2014). ARS is characterized as a decrease in 

movement speed and an increase in track sinuosity and for transiting it is vice versa 

(Bovet and Benhamou 1988). Yet such assumptions about the underlying movement 
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processes may not be valid, especially for pelagic megafauna, which often forage along 

thermal fronts and do not necessarily begin ARS upon encountering prey patches (Sims 

and Quayle 1998, Polovina et al 2004, Lambardi et al. 2008). In addition, most SSSMs do 

not include vertical (diving) movement patterns even though the diving behavior of 

marine megafauna can provide valuable insights into foraging behavior (Austin et al. 

2006, Robinson et al. 2007) and diving behavior can change independently of horizontal 

movement patterns (Sale et al. 2006).  

The leatherback turtle Dermochelys coriacea conducts some of the deepest dives 

of any air-breathing animal and has been recorded descending to depths of up to 1280 m 

(Doyle et al. 2008). Leatherback turtles are thought to undertake such extreme dives in 

search of diel-migrating gelatinous zooplankton (Houghton et al. 2008). Gelatinous 

zooplankton are the predominant food source for leatherback turtles and due to their low-

energy content it is estimated leatherback turtles must consume about 100 kg per day to 

survive (Jones et al. 2012). As a result, the movement patterns of leatherback turtles are 

tightly linked to the horizontal and vertical distribution of gelatinous zooplankton 

throughout the world’s oceans (Houghton et al. 2006, Fossette et al. 2010a, Schick et al. 

2013).  

As gelatinous zooplankton form a major component of most marine ecosystems 

(Pauly et al. 2009), often prey on or compete with commercially important fish species 

(Lynam et al. 2006, Kawahara et al. 2006, Quiñones et al. 2013), and pose risks to human 

health (Gershwin et al. 2009), the movement patterns of leatherback turtles can function 

as broad-scale indicators of ecosystem functioning and health (Fossette et al. 2010a; 

Bailey et al. 2012b). In addition, many leatherback turtle populations are currently of 

conservation concern due to recent declines and/or low population sizes (Nel et al. 2013, 

Tapilatu et al. 2013). As much of the threat posed to these populations is from mortality 

due to fisheries bycatch (Spotila et al. 2000, Lewison et al. 2004), knowledge of the 

habitat preferences and oceanic distribution of this species can help us design strategies 

for minimizing interactions between fisheries and leatherback turtles (Roe et al. 2014, 

Fossette et al. 2014). 
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Here, I aim to improve our understanding of the behavioral patterns of post-

nesting leatherback turtles in waters around southern Africa. This will be achieved in 

three major steps. (1) I will describe the horizontal and vertical movement patterns of 

leatherback turtles tagged using satellite transmitters within the iSimangaliso Wetland 

Park, South Africa. This location was chosen for this study as leatherback turtles 

previously tagged at this site exhibited highly dynamic movement patterns immediately 

upon leaving the nesting area that have been associated with foraging events (Luschi et 

al. 2003, Luschi et al. 2006, Lambardi et al. 2008). (2) I will outline a method for 

identifying behavioral transitions using a changepoint analysis.  Changepoint analysis is a 

statistical tool capable of identifying step-changes in the mean and/or variation of time-

series data.  Changepoint analysis is far less processor intensive than other more 

commonly used methods for identifying changes in an animal’s behavioral state, such as 

SSSM, and as such is suited to analyzing multiple metrics simultaneously. Also, as 

changepoint analysis does not require any prior specification of the movement process, 

unlike SSSM, it is not reliant on prior assumptions on movement patterns and thus can be 

run on any selected behavioral metric. (3) I will overlay the identified behavioral changes 

onto remotely-sensed oceanographic data that influence the distribution and abundance of 

gelatinous zooplankton prey ((Lilley et al. 2011, Lucas et al. 2014) and thus also 

predicted to influence leatherback turtles movements. 

 

3.3 Methods 

 

3.3.1 Study site 

 

The iSimangaliso Wetland Park is located in the north-east corner of South Africa 

(28°0’ S, 32°30’ E). The coastal portion of the Park is approximately 280 km long and is 

characterized by a series of sandy beaches separated by rocky headlands 5 to 15 km apart. 

To encounter nesting turtles, I patrolled the northern 56 km of the Park – a stretch of 

beach along which leatherback turtles nest with a roughly uniform distribution (Thorson 

et al. 2012). 
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3.3.2 Tagging 

 

To encounter nesting turtles, I patrolled the nesting beaches by vehicle every 

night during the peak nesting season (November to February) over two years: 2011/12 

and 2012/13. Nesting turtles were only approached after egg laying had commenced. For 

every turtle encountered, I checked for and applied metal and passive integrated 

transponder (PIT) tags; recorded a GPS location, and scanned the ovaries of each turtle 

using a Sonosite 180 Plus real-time portable ultrasound (Sonosite, Washington, USA). 

The purpose of the ultrasound scan was to determine whether or not a turtle would 

continue to lay nests during the remaining nesting season (Rostal et al., 1996; Blanco et 

al., 2011). We preferentially deployed satellite transmitters onto turtles that had finished 

nesting for this season and were about to begin its post-nesting migrations; however, this 

was not always possible. A number of transmitters were also deployed on turtles that 

were still inter-nesting. If an inter-nesting turtle with a transmitter was re-encountered on 

a subsequent nesting event, the original transmitter was removed and replaced with a new 

device. In total, I deployed 20 Mk10-PAT satellite transmitters (Wildlife Computers, 

Washington, USA). 

 

3.3.3 Attachment and recovery of transmitters 

 

Transmitters were anchored to the pygal process (caudal peduncle) using a tethering 

method adapted from Morreale (1999), Blanco et al. (2012), and Patel (2013).  

Prior to deployment, transmitters were fitted with an additional ring of high-density 

foam around the pre-existing float to improve their buoyancy (Figure 1). This was to ensure 

the transmitter would float to the surface, and remain upright, when the turtle was at the 

water’s surface. The additional floatation was fixed to each transmitter using two-part 

epoxy (Loctite® Epoxy Heavy Duty). The transmitters were also spray-painted black 

(Rust-Oleum) and then coated with an anti-fouling spray paint (Silpar TK). Care was taken 

not to cover any sensors with the additional foam, paint or anti-fouling. The mean 

buoyancy of the transmitters with the additional foam was 41.36 g ± 3.65 SD. 



56 
 

  

To attach the transmitter, a cordless drill with a sterilized 5 mm drill bit was used 

to create an incision 20 to 30 mm from the posterior edge of the pygal process. The incision 

was immediately treated with spray antiseptic (oxytetracycline). Sterile surgical tubing was 

threaded through the hole and then cut flush with the carapace.  Delrin buttons were placed 

above and below the hole through which was threaded a monofilament fishing line (180 kg 

test). The fishing line and buttons were fastened in place using a corrodible crimp. To one 

of the over-hanging ends of the fishing line a swivel, which was connected to the 

transmitter, was fastened using another corrodible crimp. The entire tether, from the anchor 

to the transmitter, was kept between 30 and 35 cm in length to minimize the potential for 

entanglement with the hind flippers. The transmitters also come pre-fitted with an 

emergency release pin that breaks under 40 kg of force. The emergency release pin was 

also set to automatically release after 1 year to prohibit long-term encumbrance of the study 

animal. 

It required less than 10 mins for the transmitter to be attached and did not require 

the animal to be restrained. Transmitters were only deployed on nesting turtles that 

appeared to be in good health and were without visible injuries. When recovering a 

transmitter, the fishing line beneath the lower button was cut and the tether was pulled free. 

A new transmitter was then anchored through the same hole that was created on the original 

deployment. 

 

3.3.4 Setup of satellite telemetry devices 

 

The transmitters were programmed to record depth every 10 seconds, although due 

to band-width limitations not all these data could be dependably relayed remotely. Instead, 

on-board software identified the maximum depth and total duration of individual dives, 

defined as each time the transmitter descended below a depth of 3 m until the transmitter 

returned to a depth shallower than 3 m. The dive data were assigned to bins (dive depth 

bins were set at 0, 6, 10, 30, 50, 100, 150, 200, 300, 400, 500, 600, 800, 1000, and > 1000 

m. The dive duration bins were set at 0, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 90, and 



57 
 

  

> 90 mins) and then relayed a frequency histograms of the number of dives, dive duration, 

and maximum dive depth in successive 4 h time intervals.  

The transmitters relayed their dive data along with their location via the Argos 

Satellite System (Maryland, USA). The transmitters were not duty-cycled but were 

programmed to relay a maximum of 52 messages day-1 – enough to relay all of the 

frequency histograms collected that day twice over. If any fewer than 52 messages were 

sent in a given day, the unused messages would be added to the message limit for the 

subsequent day. The transmitters were programmed to prioritize relay data collected within 

the past 10 days over older data. 

 

3.3.5 Processing horizontal movement data 

 

The Argos Satellite System gives each location a value of 3, 2, 1, 0, A, or B 

depending on the confidence of the locations accuracy, with 3 being the most accurate 

and B being the least. To remove erroneous data, the data were filtered using an 

algorithm modified from Freitas et al. (2008). First, all locations were excluded that were 

located over 5 km from the previous location and required a movement speed over 240 

km d-1. Location less than 5 km apart were retained as otherwise many good-quality 

locations, for which the implausible swim speeds are an artefact resulting for the 

locations being recorded close to each other in time, could be removed. In addition, 

maximum movement speed was chosen by as prior inspection of the data suggested that 

animals could reliably reach speeds up to 200 km d-1 when swimming with the prevailing 

flow of the Agulhas Current. Next in the filtering process, all the locations were removed 

that required turn angles greater than 165° if the track leading to them was longer than 5 

km. This was chosen to remove conspicuous and abrupt movement patterns that are more 

likely to be a product of measurement error than animal behavior. For later analysis I 

required daily position estimates (see section 3.3.6), so as a final filtering step all but the 

highest LC for each day was deleted. When there were multiple equivalently high LC 

locations for a given day, I chose the earliest received location. 
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Due to filtering and haphazard data transmission, daily locations were not always 

available. This issue was address using a State-Space Model, as defined in Jonsen et al. 

2007, on the speed and turn angle filtered data (not the best-daily location). The output of 

this model was used to ‘fill-in’ the locations between the filtered daily locations. The 

output of the SSM was only used for interpolation if the gap between subsequent 

locations was shorter than 15 days. In total, 8% of the tracking data was derived from the 

SSM model. 

As the transmitters also relayed dive data, I could use this information to verify 

that the transmitter was still attached to the animal. When a transmitter stopped diving to 

depths lower than 10 m for a period of over 10 days, it was assumed the transmitter had 

broken off the animal. Consequently, all data from when diving ceased were ignored. 

 

3.3.6 Changepoint Analysis Model (CAM) 

 

From the satellite telemetry data, I generated an array of both horizontal and 

vertical movement metrics that would be indicative of a behavioral shift. Specifically, 

metrics were chosen that might be indicative of foraging behavior based on previous 

studies that have identified shifts in the diving behavior of leatherback turtles, and other 

marine animals, upon reaching putative foraging areas. The 4 metrics I chose were: 

Locations within 75 km – I calculated the number of daily locations within a 75 

km radius of each individual location along the entire track of each turtle. This provided 

us a metric to identify decreases in movement speed or increases in track sinuosity that 

are commonly associated with ARS behavior. I used a 75 km radius as this is close to 

maximum swimming speed per day that has been observed in other studies tracking 

leatherback turtles (Shillinger et al. 2011, Bailey et al. 2012b). 

Number of Dives – I calculated the number of dives that occurred per 4 h period 

from both the dive duration and dive depth histograms. Field data for leatherback turtles 

have shown that animals reduce both dive durations and surface intervals when in 

putative foraging areas (James et al. 2005, James et al. 2006a, Fossette et al. 2010b), 
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which should lead to a large increase in the number of dives per time-period. The number 

of dives can therefore provide a proxy for activity levels. 

Variation in Dive Duration – I calculated the standard deviation for dive duration 

per 4 h period from the dive duration histogram (using the conservative limit of the dive 

duration bins). We chose this metrics as previous models of optimal diving theory have 

suggests that animals could improve their encounter rate with diffuse prey by varying 

their dive duration (Thompson and Fedak 2001). Conversely, I therefore predict that 

animals that have encountered large prey assemblages, such as gelatinous zooplankton 

blooms, would show minimal variation in dive duration as they optimize their diving 

strategy to maximize food intake in a super-abundant foraging area.  

Maximum Dive Depth – I calculated the maximum dive depth per 4 h period using 

the max-min-depth function of the Mk10-PAT transmitters. At putative foraging areas, 

leatherback turtles tend to dive to much shallower depths (James et al. 2006a, Fossette et 

al. 2010b). This could be because food is present closer to the surface at prey 

aggregations or that deep diving during transit is associated with exploring the water-

column for food (Houghton et al. 2008) or are a more efficient mechanism for travelling 

long-distances (Weihs 1973). 

After calculating each of these 4 metrics for each turtle, I conducted changepoint 

Analysis on each of these metrics using the package ‘changepoint’ in R (R Development 

Core Team, Killick and Eckley 2014). I used the binary segmentation method to identify 

a changepoint in the mean and variance of the time-series data using the Cumulative Sum 

of Squares Method (as it has no distributional assumptions), a penalty value of 5, and 

identified a maximum of 5 changepoints for each metrics. When changepoints occurred 

in at least 3 separate metrics within a period of 3 days, it was considered to constitute a 

single behavioral change. I was able to identify the initial behavioral state of each 

individual by consulting the ultrasound data. If an animal was identified to still have 

more clutches to lay that season, its behavior was classified as inter-nesting. Conversely, 

if the turtle had no more nests to lay and thus was about to begin its post-nesting 

migrations, its behavior was classified as transiting. The first behavioral change observed 

in inter-nesting intervals was considered a switch to transiting behavior, while the next 
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change observed in transiting individuals was considered a switch to foraging behavior. 

Behavioral shifts that occurred in foraging individuals were considered as either a 

reversion back to transiting behavior or a continuation of foraging behavior depending on 

how similar the new movement metrics are to the previously identified behavioral states. 

Transiting and foraging behaviors as defined as either coastal, if the animal was within 50 

km of the coastline, or pelagic, if the animal was over 100 km from the coastline. The 

changepoint analysis model (CAM) was only run on turtles that were tracked into their 

post-nesting migrations. 

 

3.3.7 Oceanographic data 

 

The tracks of each turtle, incorporating the identified behavioral changes, were 

superimposed onto contemporaneous maps reflecting oceanographic conditions. These 

included maps of bathymetry, sea surface temperature (SST), net primary productivity 

(NPP), and ocean currents. Bathymetry data at a spatial resolution of 0.017 ° were 

provided by the global relief model, ETOPO1, available at the National Geophysical Data 

Center, USA (http://www.ngdc.noaa.gov/mgg/global/). SST at daily intervals and a 

spatial resolution of 0.054 ° were provided by The Operational Sea Surface Temperature 

and Sea Ice Analysis (OSTIA) from the UK Met Office and were available at 

(http://podaac-www.jpl.nasa.gov/dataset/, UKMO-L4HRfnd-GLOB-OSTIA). NPP at 8-

day intervals and a spatial resolution of 0.083 ° were provided by the Epperly-VPGM 

model available at the Oregon State University Ocean Productivity Page 

(http://www.science.oregonstate.edu/ocean.productivity/index.php). Ocean currents were 

available at 5-day intervals and a spatial resolution of and a resolution of 0.333 ° by 

Ocean Surface Current Analysis Real-time (OSCAR) and were available at 

(http://podaac-www.jpl.nasa.gov/dataset/, OSCAR_L4_OC_third-deg). 
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3.4 Results 

 

A total of 20 leatherback turtles were tracked via satellite telemetry from their 

nesting beaches in the iSimangaliso Wetland Park. Of these, 16 were tracked into their 

post-nesting migrations (Figure 2) and 3 of these (G, J, and O), I encountered at least 

twice during their inter-nesting periods allowing for recovery and redeployment of their 

transmitters. The mean tracking duration of the turtles that were tracked into their post-

nesting migrations was 111.5 ± 41.32 SD days and the maximum tracking duration was 

208 days (Table 1). The CAM model was run on each of the turtles tracked into their 

post-nesting migrations (Figures 3 - 19). 

For each of the turtles tracked into their post-nesting migrations it was possible to 

assign putative foraging areas in one of three major oceanic regions: the (1) South 

Atlantic Ocean (SAO) (n = 3), (2) Western Indian Ocean (WIO) (n = 5), and (3) 

Mozambique Channel (MC) (n = 8).   

 

3.4.1 South Atlantic Ocean (SAO) 

 

The turtles that migrated towards the SAO initially headed south-west of the 

nesting area. Turtles A and C moved rapidly along a roughly straight-path heading 

southwest from the nesting area at speeds that periodically exceeded 200 km d-1. The 

relatively straight path taken by these animals roughly reflects the east South African 

coastline and the prevailing flow of the Agulhas Current (Figure 20, see Video 1 on the 

Supplmentary CD). Turtle B followed a more meandering path southwest of the nesting 

area following the edges of the eddies of the Agulhas Retroflection. At approximately 18 

°E, all of these turtles began heading north. Turtles B and C exhibited slower movement 

speeds and started conducting looping movements just west of the highly productive 

waters of the Beguela Upwelling System (Figure 21, see Video 2 on the Supplmentary 

CD). Turtle A continued north on a roughly straight course, but began to slow down in 

the open-waters off the coast Angola at approximately 22 °S. 
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The diving behavior of turtles A and C stayed relatively consistent as they 

remained within the Agulhas Current and the diving patterns of turtle A even stayed 

consistent as it migrated north (Figure 4). Conversely, the CAM model identified a 

behavioral shift, categorized by an increase in the number of dives, a reduction in the 

variation in dive duration, and an increase in locations within 75 km, as soon as turtle C 

moved north of the Agulhas Current. The switch to foraging behavior lasted 17 days 

before the turtle switched back to a transiting behavior even though it remained within 

the pelagic waters of western South Africa (Figure 6).  

For turtle B, the CAM identified a single behavioral change, categorized by an 

increase in the number of dives, decrease in the variation of dive duration, and a decrease 

in maximum dive depth. This change was observed upon reaching the seamount at 36 °S 

that peaks around 2,000 m depth (Figure 5). No further behavioral changes were 

observed for the remainder of this animal’s movements even though distinct fluctuations 

were evident in the number of dives as the turtle migrated north towards the Benguela 

Upwelling System 

 

3.4.2 Western Indian Ocean (WIO) 

 

The turtles that migrated towards the WIO generally moved away from the 

nesting areas in a south-easterly direction. Turtles E, G, H, and F all conducted tightly 

circuitous paths for up to 30 days between 36 and 38 °S (Figure 8, 9, 10, and 11, 

respectively). Each of these circuitous paths began when individuals moved into the 

center of eddies. The turtle then left these areas as soon as the eddy began to dissipate 

(Figure 22, 23, 24; see Video 1 on the Supplmentary CD). Afterwards, all of these turtles 

except E, began moving east again and the movements of turtles H and F tightly followed 

the easterly flow of the Agulhas Retroflection. None of these turtles, or those that 

migrated to the SAO, were observed moving further south than 43 °S and always 

remained in water with a SST above 14 °C (see Video 3 on the Supplmentary CD). 

While migrating these turtles had relatively low numbers of dives and high 

variation in dive duration, but while conducting the circuitous paths, the number of dives 
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were notably higher and variation in dive duration lower. As such, the CAM identified 

behavioral changes for each of these animals as they moved into the center of each of the 

eddies and another as the animals left these eddies. Another behavioral change was 

identified in turtle H, 3 days before the end of its tracking duration (Figure 11). Once 

again this change was associated with an increase in the number of dives, a decrease in 

the variation of dive duration, and an increase in the locations within 75 km. 

 

3.4.3 Mozambique Channel (MC) 

 

Half of the turtles tracked during their post-nesting migrations headed north of the 

nesting area towards the MC (Figure 25). All of the turtles that migrated to the Sofala 

Banks generally remained within 100 km of the coastline as they migrated north; 

however, 4 individuals conducted looping movements that extended up to 250 km out to 

sea before returning to the coastline. While migrating north, movement speeds of up to 50 

km d-1 were observed, although upon reaching the Sofala Banks, where these turtles 

appeared to take up residence, the movement speeds generally dropped to less than 10 km 

d-1. The areas of the Sofala Banks utilized by leatherback turtles are largely contained 

within the 50 m isobaths (Figure 25) and is an area where NPP exceeds 2000 mg C m-2 

day-1 throughout the year (Figure 26). 

The turtles that migrated to the MC showed very similar diving patterns while 

migrating north of the nest area: these turtles all demonstrated low numbers of dives, with 

notable high variation in dive duration and maximum dive depth. Upon reaching the 

Sofala Banks, the numbers of dives rose rapidly, the variation in dive duration decreased, 

and the maximum dive depth decreased. These very clear patterns meant that the CAM 

identified behavioral changes in all individuals as soon as they reached the Sofala Banks. 

In individuals J and P, a second behavioral change occurred while the turtles where 

foraging in the Sofala Banks (Figure 13 and 19). For turtle J, this corresponded with a 

100 km move from the southern to northern Sofala banks, while turtle P was already in 

the northern Sofala Banks and just moved slightly inshore. Turtle P, which had the 
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longest transmitter duration at 209 days, remained in the Sofala Banks for 146 days after 

which the transmitter stopped functioning. 

Turtle H was the only turtle that migrated north but did not head to the Sofala 

Banks. Instead, this turtle began to head east just after passing Maputo Bay, Mozambique 

and swam within 50 km of Europa Island, France before continuing towards the west 

coast of Madagascar (Figure 11). Upon reaching the Madagascan coastline the CAM 

identified a behavioural change, coinciding with an increase in the number of dives, a 

decrease in the variation in dive duration, and low maximum dive depth. A second 

behavioral change was identified as the animal approached northern Madagascar. 

 

3.4.4 Inter-nesting 

 

Using ultrasonography I was able to confirm that some turtles were still nesting 

when the transmitters were deployed. In the turtles from which I was able to recovery 

transmitters: Q, J, T, G, O, there were clear repeating patterns over every 9 to 14 days. 

The general trend was for a decrease in both the number of dives and variation in dive 

duration, although the pattern was generally clearer in variation in dive duration. 

 

3.5 Discussion 

 

 I employed satellite transmitters to determine the post-nesting movements and 

diving behavior of leatherback turtles from the iSimangaliso Wetland Park. To achieve 

this I employed a novel tethering technique for attaching satellite transmitters that has not 

be used before at this location. This technique is predicted to increase the hydrodynamic 

drag of a swimming leatherback turtle by less than 5 % (Jones et al. 2014), while the 

backpack method used in previous satellite tracking studies at this location can increase 

hydrodynamic drag by over 100 % (Jones et al. 2014). Furthermore, turtles tracked using 

backpacks swam slower and conduct shorter dives than those tracked using other low-

drag attachment techniques (Fossette et al. 2007, Witt et al. 2011). The lower drag-

attachments used in this study are likely to demonstrate the most accurate portrayal of 
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leatherback turtles behavior in the waters of southern Africa to date, and indeed this is the 

first study to satellite track leatherback turtles migrating towards the coastal waters of the 

Sofala Banks. Furthermore, this is the first study to CAM, or indeed any other technique 

apart from SSSM (e.g. Jonsen et al. 2007, Shillinger et al. 2011, Benson et al. 2011, 

Dodge et al. 2014) to statistically identify behavioral shifts in migrating leatherback 

turtles. This technique provided unique insights into how migrating leatherback turtles 

respond to dynamic oceanographic features in both their horizontal and vertical behavior. 

The insights into leatherback turtle behavior provided in this study provides an important 

step forward in understanding the habitat preferences of this species. 

 

3.5.1 Pelagic or coastal specialists 

 

The turtles tracked in this study fell into two major groups: those that migrated to 

pelagic foraging grounds in either the SAO or the WIO, and those that migrated to coastal 

foraging areas in the Mozambique Channel. Migrating to pelagic foraging areas is similar 

to the behavior observed in leatherback turtles previously tracked from the iSimangaliso 

Wetland Park (Hughes et al. 1998, Luschi et al. 2003, Lambardi et al. 2008) and is 

common in leatherback turtles foraging in all ocean basins (Shillinger et al. 2011, Witt et 

al. 2011, Benson et al. 2011).  However, only post-nesting turtles from Pacific coast of 

Costa Rica and  Indonesia have been recorded remaining in shallow (< 200 m) coastal 

waters en route to equally shallow foraging areas, and in both cases this constituted less 

than 10 % of the individuals tracked from this location (Benson et al. 2011). As such, the 

prevalence of coastal behavior in the leatherback turtles tracked in this study suggests 

that leatherback turtles might have more flexible habitat preferences than previous 

considered. The relatively small percent of coastal turtles identified in other studies could 

indeed be due to the coastal turtles being largely eradicated by fisheries, as suggested by 

Saba et al. (2007). 

Many studies have highlighted the importance of ocean currents in defining the 

movement patterns of leatherback turtles worldwide (Gaspar et al. 2006, Gall et al. 2013) 

and the post-nesting movements of the leatherback turtles from South Africa are a prime 



66 
 

  

example (Luschi et al. 2003). Earlier tagging studies observed that many leatherback 

turtles migrating from South Africa followed the main flow of the Agulhas Current down 

the east coast of Africa. Similar patterns were observed in turtles A and C; however, a 

greater percentage of individuals actually migrated east or southeast from the nesting 

area. These individuals did not follow the Agulhas Current, although they regularly 

followed the path of mesoscale eddies en route to the Agulhas Retroflection. Following 

major current patterns may not take individuals in the most direct route to a potential 

foraging area, but the benefits of passive advection may make it an efficient mechanism 

for traversing long distances (Luschi et al. 2003) or could provide evidence that these 

organisms are only migrating towards broad-scale oceanic areas (Lambardi et al. 2008). 

Indeed, it has been previously postulated that the movement patterns of leatherback 

turtles are more akin to prolonged sojourns in vast foraging areas than conventional 

migrations (Luschi et al. 2006).  

Many of turtles tracked to pelagic foraging areas initially headed towards the 

frontal region where the Southern Ocean converges with the Atlantic and Indian Oceans. 

Like most frontal-zones, this often exhibits high-levels of NPP where cold-nutrient rich 

waters mix with warmer-nutrient poor waters (Strass 1991). However, the movement of 

leatherback turtles in this study generally bypassed the areas of highest NPP in this 

frontal-zone. Even those leatherback turtles that migrated to the SAO did not migrate 

towards the high NPP zone of the Benguela Upwelling System, but remained in the lower 

NPP regions off-shore. Instead, the movements of leatherback turtles in both the SAO 

and WIO showed regular behavioral changes when in the centre of mesoscale eddies. 

Mesoscale eddies are thought to often create large confluences of food (Nel et al. 2001, 

Ream et al. 2005, Polovina et al. 2006) and could provide a better predictor of gelatinous 

zooplankton distribution than NPP. Indeed, many marine predators including penguins 

(Cotté et al. 2007), tuna (Fiedler and Bernard 1987), and whales (Doniol-Valcroze et al. 

2007) often focus foraging efforts at the centers of mesoscale eddies. 

The leatherback turtles tracked in this study never moved into waters with SST 

colder than 14 °C, and so never moved into the Southern Ocean. Similar patterns are 

observed in the North Atlantic where leatherback turtles are only rarely observed in water 
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less than 12 °C (Witt et al. 2007), although it should be noted that leatherback turtles 

have been observed repeatedly diving into waters as cold as 0.4 °C (James et al. 2006b). 

This suggests that temperatures between 12 and 14 °C may represent the minimal 

temperature at which leatherback turtles can remain in for prolonged periods of time, 

although brief forays into colder waters are possible.  

The turtles that migrated towards pelagic foraging areas generally showed 

multiple behavioral shifts over the tracking duration (range 0 to 3). In contrast, the CAM 

identified only one behavioral shift in each individual migrating towards the MC as soon 

as it reached the Sofala Banks. Moreover, after reaching the Sofala Banks most 

individuals remained resident within areas less than 50 km2 for the remainder of their 

tracking duration. This suggests that pelagic individuals experience more sporadic 

foraging conditions than in the Sofala Banks. Moreover, NPP appeared to be a good 

indicator of foraging behavior for these coastal individuals. A promising avenue for 

future research could be the effects of differing foraging conditions on individual 

variation in reproductive output. Indeed, turtles from a single nesting area, but foraging in 

different locations, have been observed to significantly differ in a wide range of factors 

influencing reproductive fitness, including body-size, clutch size (Zbinden et al. 2011), or 

remigration interval (Caut et al. 2008). 

Many recent publications have highlighted the difficulty in protecting leatherback 

turtles due to their extensive migratory behavior (Fossette et al. 2014, Roe et al. 2014). 

Yet as this coastal cohort remained with the Exclusive Economic Zones of South Africa 

and Mozambique during the tracking period this could represent a unique chance for an 

otherwise complex multinational conservation plan. Protecting these animals could also 

be achieved by prohibiting fishing activities over a relatively small and spatially-explicit 

area. However, the Sofala Banks also hosts a prawn-trawl fishery than is one of the major 

industries in Mozambique (Palha de Sousa et al. 2006) and is known to have leatherback 

turtle bycatch (Gove et al. 2001). The most productive avenue might therefore be to 

promote the use of bycatch mitigation tools, such as Turtle Excluder Devices, without the 

need for fisheries closures (Brewer et al. 2006).  
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3.5.2 Assessment and limitations of the CAM 

 

Many of the shifts in horizontal movement patterns, as identified by the CAM, 

were mirrored by shifts in the diving behavior metrics. In addition, the same patterns 

were observed in all diving behavior metrics upon switching from transiting to foraging 

behavior. Specifically, upon beginning foraging behavior there was an increase in the 

number of dives, a decrease in the variation of dive duration, and a reduction of 

maximum dive depth. Interestingly, these patterns were the same regardless of whether 

an individual was foraging along a front (e.g. turtle B and H), within mesoscale eddies 

(e.g. see turtles E, G, H, and F), on in a coastal upwelling zone (e.g. turtles I, J, K, L, N, 

O, and P). This indicates that diving behavior patterns are indeed useful indicators of 

foraging behavior in leatherback turtles. Furthermore, changes in diving behavior 

indicative of foraging behavior often occurred when no such change was observed in the 

horizontal movement patterns (e.g. turtle B). To this extent, vertical movement patterns 

alone even could even better indicators of foraging than horizontal movement patterns.  

However, it is important to note that the validity of the CAM model depends on 

whether distinct shifts in vertical or horizontal movement patterns do reflect switches 

from transiting to foraging behavior. To confirm this is the case, future studies are needed 

that track the horizontal movements and diving behavior of free-diving leatherback 

turtles, while also collecting data that can be used to confirm foraging behavior. This 

could be achieved through the use of stomach temperature sensors that are able to 

identify when a turtle has swallowed a prey item (Casey et al. 2010) or animal-borne 

video cameras that can visually confirm prey ingestion (Heaslip et al. 2012). From these 

studies, it would be possible to determine those metrics are the most appropriate for 

identifying the onset of particular behaviors. 

Nevertheless, a major strength of the CAM model is its adaptability. As 

Changepoint Analysis does not require prior specification of the movement process to be 

identified, it can identify shifts in the mean and/or variance of any given variable. As 

such, CAMs could theoretically incorporate any number of behavioral metrics, such as 

heartbeat rate or body temperature, to help identify any shifts in behavior or physiology. 
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3.7 Tables 

 

Table 3.7.1 Details of all the satellite transmitters deployed in this study. 

Turtle ID Date Deployed Last Location Final Destination Data days SSSM days 

A 27/2/2012 24/5/2012 South Atlantic Ocean 84 4 

B 09/1/2012 05/6/2012 South Atlantic Ocean 142 7 

C 13/1/2013 06/4/2013 South Atlantic Ocean 83 4 

D 14/11/2011 30/12/2011 Western Indian Ocean 40 7 

E 09/1/2012 01/5/2012 Western Indian Ocean 91 13 

F 22/1/2013 15/4/2013 Western Indian Ocean 56 4 

G 25/1/2012 08/6/2012 Western Indian Ocean 128 8 

H 01/2/2013 06/4/2013 Western Indian Ocean 56 9 

I 11/2/2013 29/5/2013 Mozambique Chanel 103 5 

J 16/1/2013 05/6/2013 Mozambique Chanel 139 2 

K 13/2/2012 09/6/2012 Mozambique Chanel 115 3 

L 24/1/2013 15/5/2013 Mozambique Chanel 101 10 

M 15/2/2013 17/4/2013 Mozambique Chanel 62 0 

N 20/1/2012 23/5/2012 Mozambique Chanel 111 14 

O 28/12/2012 03/6/2013 Mozambique Chanel 138 20 

P 27/2/2012 22/9/2012 Mozambique Chanel 119 10 

Q 10/11/2011 14/12/2011 Nesting area 33 2 

R 11/12/2011 30/12/2011 Nesting area 18 2 

S 04/1/2013 21/2/2013 Nesting area 31 20 

T 13/1/2013 20/2/2013 Nesting area 10 0 
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3.8 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8.1 PAT Mk10 transmitters as (a) standard from Wildlife Computers (Washington, USA) and (b) custom-built 

floatation. 
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Figure 3.8.2 Movements of 16 leatherback turtles tracked by satellite telemetry from their nesting grounds in the iSimangaliso 

Wetland Park. Tracks are overlaid onto a bathymetric map.  
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Figure 3.8.3 Movements of 16 leatherback turtles tracked by satellite telemetry from their nesting grounds in the iSimangaliso 

Wetland Park. Each track has been analyzed by a changepoint analysis model to determine its behavioral state. Tracks are 

overlaid onto a bathymetric map.  
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Figure 3.8.4 Movements and dive behavior of Turtle A tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 

 



 
 

  

8
6
 

 

Figure 3.8.5 Movements and dive behavior of Turtle B tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 3.8.6 Movements and dive behavior of Turtle C tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 3.8.7 Movements and dive behavior of Turtle D tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 3.8.8 Movements and dive behavior of Turtle E tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 3.8.9 Movements and dive behavior of Turtle F tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 3.8.10 Movements and dive behavior of Turtle G tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 3.8.11 Movements and dive behavior of Turtle H tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 3.8.12 Movements and dive behavior of Turtle I tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoint occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 4.8.13 Movements and dive behavior of Turtle J tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoint occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 4.8.14 Movements and dive behavior of Turtle K tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 4.8.15 Movements and dive behavior of Turtle L tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 4.8.16 Movements and dive behavior of Turtle M tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 4.8.17 Movements and dive behavior of Turtle N tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 

 



 
 

  

9
9
 

 

Figure 4.8.18 Movements and dive behavior of Turtle O tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoint occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 4.8.19 Movements and dive behavior of Turtle P tracked by satellite telemetry from its nesting grounds in the 

iSimangaliso Wetland Park. Dive metrics are the number of dives per 4 h period (# DIVES), variation in dive duration per 4 h 

period (VAR. DUR.), the maximum dive depth per 4 h period (MAX. DEPTH), and daily locations within 75 km of each 

individual location (LOCS. < 75 km). Dotted lines represent the presence of a changepoint. Dot in red are when 3 or more 

changepoints occurred in different metrics within a period of 3 days, otherwise dots are in blue. 
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Figure 4.8.20 Movements of turtle A and C tracked by satellite telemetry from their nesting grounds in the iSimangaliso 

Wetland Park. Each track has been analyzed by a changepoint Analysis Model to determine its behavioral state. Tracks are 

overlaid onto a map of ocean currents for the 5-day period between 9/3/12 and 13/3/12. 
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Figure 4.8.21 Movements of turtle A, B and C tracked by satellite telemetry from their nesting grounds in the iSimangaliso 

Wetland Park. Each track has been analyzed by a changepoint Analysis Model to determine its behavioral state. Tracks are 

overlaid onto a map of Net Primary Productivity for a monthly period between 1/4/12 and 1/5/12. 
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Figure 4.8.22 Movements of turtle F and H tracked by satellite telemetry from their nesting grounds in the iSimangaliso 

Wetland Park. Each track has been analyzed by a changepoint Analysis Model to determine its behavioral state. Tracks are 

overlaid onto a map of ocean currents for the 5-day period between 27/2/13 and 3/3/13. 
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Figure 4.8.23 Movements of turtle E tracked by satellite telemetry from its nesting grounds in the iSimangaliso Wetland Park. 

This track has been analyzed by a changepoint Analysis Model to determine its behavioral state. This track are overlaid onto a 

map of ocean currents for the 5-day period between 3/3/12 and 8/3/12. 
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Figure 4.8.24 Movements of turtle G tracked by satellite telemetry from its nesting grounds in the iSimangaliso Wetland Park. 

This track has been analyzed by a changepoint Analysis Model to determine its behavioral state. This track are overlaid onto a 

map of ocean currents for the 5-day period between 1/4/12 and 6/4/12. 
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Figure 4.8.25 Movements of 8 leatherback turtles tracked by satellite telemetry from their nesting grounds in the iSimangaliso 

Wetland Park that migrated to the Mozambique Channel. Tracks are overlaid onto a bathymetric map. Dotted black lines 

represent 50 and 1000 m isobars. 
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Figure 4.8.26 Left - Movements of turtle I, J, K, L, M, N, O, and P tracked by satellite telemetry from their nesting grounds in 

the iSimangaliso Wetland Park. Each track has been analyzed by a changepoint Analysis Model to determine its behavioral 

state. Tracks are overlaid onto a map of Net Primary Productivity for a monthly period between 1/4/12 and 1/5/12. Right – The 

Net Primary Productivity map with the turtle locations removed.
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CHAPTER 4. STABLE ISOTOPE ANALYSIS AND SATELLITE TELEMETRY 

REVEAL THE MIGRATORY BEHAVIOR OF LEATHERBACK AND 

LOGGERHEAD TURTLES AROUND SOUTHERN AFRICA AND THE 

CONSEQUENCES OF HIGH-DRAG BIOLOGGING DEVICES 

 

4.1 Abstract 

 

Combining satellite telemetry and stable isotope analysis can provide deep 

ecological insights into the habitat preferences of migratory species. In this study, we 

employed both techniques to investigate the at-sea behavior of leatherback Dermochelys 

coriacea and loggerhead Caretta caretta turtles nesting in the iSimangaliso Wetland 

Park. Specifically, we aimed to (1) use satellite telemetry to validate whether carbon and 

nitrogen stable isotope analysis of skin tissue could be used to identify pre-nesting 

foraging habitats, (2) use both techniques to determine the relative importance of 

different foraging areas for these nesting populations, and (3) compare the migratory 

behavior of leatherback turtles tracked using either high- or low-drag satellite-transmitter 

attachments (harness or tethers, respectively). Overall, stable isotope analysis mirrored 

the migratory patterns that were recorded by tethered satellite transmitters and both 

techniques confirmed that the Mozambique Channel is the most common foraging area 

for leatherback and loggerhead turtles nesting in South Africa. Conversely, stable isotope 

analysis did not reflect the migratory patterns of leatherback turtles tracked using harness 

satellite transmitters. Furthermore, the movements of those animals tracked using 

harnessed transmitter animal appear move influenced by the prevailing currents than 

those tracked using tethered transmitters. We conclude that stable C and N isotope 

analysis of sea turtle skin tissue is a practical tool for scaling-up the inferences that can be 

gained from satellite telemetry to be more applicable on a population-scale. We also 
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conclude that low-drag transmitters are necessary to accurately assess ‘natural’ migratory 

behaviors of marine animals, especially when individuals may be interacting with strong 

currents. 

 

4.2 Introduction 

 

In recent decades, there has been a rapid proliferation in the use of animal-borne 

satellite telemetry devices to study the movements of free-roaming animals (Hart and 

Hyrenbach 2009). The use of such devices has become particularly widespread when 

investigating species that are challenging to track visually, such as marine organisms and 

long-distance migrants (Godley et al. 2008; Robinson et al. 2010; Hammerschlag et al. 

2011). Yet the rise in the use of satellite telemetry in ecological studies has not been 

matched by an equivalent increase in the number of studies assessing the limitations of 

these devices (Hebblewhite and Haydon 2010; McMahon et al. 2011; Vandenabeele et al. 

2011). One such limitation is that satellite transmitters are currently very expensive (up to 

$5,000 per device). This constrains their utility in studies requiring large sample sizes, 

such as those aiming to discern the spatial distribution of a migratory species at a 

population-scale (Börger et al. 2006; Lindberg and Walker 2007). Another issue is that 

the attachment and retention of the device may alter an animal’s behavior and even lower 

its fitness (Walker and Boveng 1995; Gauthier-Clerc et al. 2004; Thomson and Heithaus 

2014). This raises ethical concerns, especially when working with endangered species, 

and has implications for the applicability of the collected data (Wilson and McMahon, 

2006). The issues of small sample sizes or device-induced atypical behavior can be 

circumvented, however, by complimenting satellite telemetry with the use of elemental or 

stable isotope analysis as a tool for identifying animals’ foraging habitat preferences. 

  Stable isotopes are non-radioactive atoms with the same number of protons 

(atomic number) but differing numbers of neutrons (atomic weight). Through stable 

isotope analysis, it is possible to determine the ratios of ‘lighter’ (neutron depleted) to 

‘heavier’ (neutron enriched) isotopes of a given element (e.g. carbon or nitrogen). Early 

ecological studies employing stable isotope analysis discovered that the stable isotope 
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ratios of primary producers often varied along environmental gradients (Goericke and Fry 

1994; Altabet and Francois 1994; Montoya 2007). In addition, stable isotope ratios are 

transferred up the food-web in a roughly predictable manner (Peterson and Fry 1987). For 

example, consumers tend to be enhanced in δ15N by 3 – 4 ‰ relative to their prey, while 

δ13C is only enhanced by 0 – 1 ‰ (Post 2002). As a result, animals foraging in different 

habitats or at different trophic levels tend to have distinct isotopic ratios (Cherel and 

Hobson 2007; Rooker et al. 2008; Hückstädt et al. 2012). With knowledge of how stable 

isotope ratios vary between foraging grounds it is thus possible to infer an animal’s 

previous foraging location through stable isotope analysis of superficial tissue samples 

(Hobson, 1999; Rubenstein and Hobson, 2004). 

Currently, spatial patterns in isotopic ratios have only been established for some 

species in a narrow range of locations (Graham et al., 2010). However, this can be 

addressed by conducting stable isotope analysis on individuals with known foraging 

areas, such as those tracked by satellite telemetry. Once the isotopic signature of each 

foraging areas has been identified then stable isotope analysis can be used alone to infer 

the foraging areas of non-satellite tracked individuals. The benefits of using stable 

isotope analysis in this manner are that it is a relatively inexpensive ($5 to 20 per 

sample). As such, this technique is often suitable for inferring the movements of large 

numbers of individuals at a low cost (Zbinden et al. 2011; Ceriani et al. 2013). In 

addition, stable isotope analysis can provide information about an animal’s previous 

foraging location (if a tissue is sampled that has an appropriate isotopic turnover rate). As 

such, the collection of a tissue sample, unlike the attachment of a transmitter, has no 

influence on the behavioral patterns discerned in the analysis.  

For several reasons, sea turtles are prime taxonomic candidates for spatial 

tracking via stable isotope analysis. First, tissue samples can be readily collected when 

adult females emerge on their nesting beaches. Second, each female from a single nesting 

beach generally forages in one of a number of spatially distinct areas that are often 

located vast distances from the nesting area (Witt et al. 2011; Benson et al. 2011; Foley et 

al. 2013; Schofield et al. 2013). Third, sea turtles are usually capital breeders and 

accumulate all energy for reproduction in the foraging grounds many weeks or months 
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before they reach their breeding grounds (Plot et al., 2013). Finally, the time required for 

the superficial tissues (e.g. skin or blood) of large reptiles to reflect the isotopic 

composition of their food is in the scale of months to years (Seminoff et al. 2007; 

Rosenblatt and Heithaus 2013). All these factors together mean that superficial tissue 

samples taken from nesting sea turtles should not reflect the isotopic signature of their 

migratory or nesting areas but be broadly reflective of their foraging areas. 

Stable isotope analysis has already been used to discern the foraging areas of 

leatherback turtles Dermochelys coriacea in both the Pacific and North Atlantic Ocean 

(Caut et al. 2008; Seminoff et al. 2012). Yet no such studies have focused on the 

population in the Indian Ocean or specifically those nesting in the iSimangaliso Wetland 

Park, South Africa. Initial tracking studies conducted at this location demonstrated that 

the movements of post-nesting leatherback turtles are strongly influenced by ocean 

currents (Luschi et al. 2003a). Specifically, most individuals are advected with the 

prevailing Agulhas Current down the east coast of South Africa into pelagic foraging 

areas, in either the South Atlantic or Western Indian Ocean (Hughes et al. 1998; 

Lambardi et al. 2008). However, the transmitters used in these studies were attached 

using a harness – a technique that is now known to increase hydrodynamic drag on these 

species by over 100 % (Jones et al. 2013). Alternatively, by using transmitters attached 

by a hydrodynamic tether that only increased drag by < 5 % (Jones et al. 2014), we 

observed that most individuals from this nesting population actually swim against the 

Agulhas current and into coastal habitats in the Mozambique Channel (see Chapter 3). 

Here, we further investigated the importance of the Mozambique Channel as a foraging 

ground for the leatherback turtles nesting in the iSimangaliso Wetland Park through 

stable isotope analysis. Such analysis could be conducted on sample sizes far beyond 

those currently available from satellite telemetry studies. In addition, the determination of 

foraging area by stable isotope analysis would provide an unbiased benchmark to assess 

whether migratory behaviors are influenced by using tracking methods with differing 

levels of drag. 

This study has three major objectives. (1) To use satellite telemetry to validate 

whether stable isotope analysis can be used to infer the foraging areas of the leatherback 
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turtles nesting in the iSimangaliso Wetland Park. To achieve this, we investigated 

whether satellite-tracked leatherback turtles that migrate to different foraging areas have 

distinct stable isotopic signatures. We will also compare these results to the stable isotope 

values of sympatrically nesting loggerhead turtles Caretta caretta that are known to 

forage in the Mozambique Channel (R Nel, unpublished data). (2) To use both satellite 

telemetry and stable isotope analysis to determine the relative importance of different 

foraging areas for the leatherback and loggerhead turtles nesting in the iSimangaliso 

Wetland Park. (3) To determine if satellite tracking influences migratory behavior. To 

achieve this, we tested if the number of turtles migrating to each foraging area is similar 

regardless of whether they were tracked by a transmitter attached by a high-drag harness 

or low-drag tether. Furthermore, these results were compared to the foraging area 

assignments as determined by stable isotope analysis. 

 

4.3 Methods 

 

4.3.1 Study site 

 

The iSimangaliso Wetland Park is located in the north-east corner of South Africa 

(28°0’ S, 32°30’ E). The coastal portion of the Park is approximately 280 km long and is 

characterized by a series of rocky headlands separated by sandy beaches of 5 to 15 km in 

length. These beaches host sympatrically nesting populations of loggerhead and 

leatherback turtles. We patrolled the northern-most 56 km of the Park’s coastline to 

encounter nesting turtles. 

When a nesting turtle was encountered we applied metal and passive integrated 

transponder (PIT) tags; collected a skin sample; and, if appropriate, attached a satellite 

transmitter. Nesting turtles were not approached until egg laying had commenced to 

minimize the potential of interrupting the nesting process. 
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4.3.2 Satellite telemetry 

 

Satellite transmitters were deployed on 42 nesting leatherback turtles between 

1995 and 2013 (for a full summary see Figure 1). The first 9 of these transmitters, which 

were deployed between 1996 and 2003, were attached using a harness method as 

described in Eckert and Eckert (1986). These tracks have been published previously 

(Hughes et al. 1998; Luschi et al. 2003a; Luschi et al. 2006). The next 13 transmitters, 

which were deployed between 2006 and 2009, were also attached using a harness 

method. These transmitters were deployed by the organization Oceans and Coasts (Cape 

Town, South Africa). The remaining 20 transmitters, which were deployed between 2011 

and 2013, were attached using a low-drag tethering technique as described in Chapter 3 

and Appendix A. This technique was originally adapted from Morreale et al. (1999). 

Satellite transmitters were only deployed on turtles that appeared to be in good health and 

with no evident injuries. 

To maximize the tracking duration during post-nesting migrations, the 

transmitters were typically deployed in the last 2 months of the nesting season (January 

and February). In addition, between 2011 and 2013, we employed the use of a Sonosite 

180 Plus real-time portable ultrasound (Sonosite) to determine whether a turtle would 

continue to lay nests during the remaining nesting season (Rostal et al., 1996; Blanco et 

al., 2012). Using this method, we were able to mainly deploy transmitters onto turtles that 

had laid their final clutch for that season and were about to begin their post-nesting 

migrations. 

In addition to location data, the tethered transmitters provided data on dive 

behavior. When a transmitter stopped recording dives to depths lower than 10 m for a 

period of over 10 days, it was assumed the transmitter had broken off the animal. 

Consequently, subsequent location data were ignored, starting from when diving activity 

was no longer recorded. In contrast, the harness transmitters from this study either did not 

collect dive data, or we did not have access to these data, and so we could not use diving 

behavior to confirm if the transmitter had prematurely detached from the animal. 
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4.3.3 Tissue sampling and preparation 

 

Skin samples were collected from a total of 96 leatherback turtles and 120 

loggerhead turtles between 2011 and 2013. In some cases, individuals were sampled 

during separate nesting events in a single nesting season (for a full summary see Figure 

2). Skin samples were collected from every individual with a tethered satellite 

transmitter. 

Skin samples were collected using a sterile 6 mm biopsy punch from the medial 

rim of the front or rear flipper, avoiding any previous scar tissue. After the skin sample 

was removed, the area was sterilized using antiseptic spray (oxytetracycline). The skin 

sample was immediately stored in 95 % non-denatured ethyl ethanol and kept at room 

temperature until transport to the lab. The upper layer of the skin (stratum corneum; 

subsequently referred to only as skin) was separated from the underlying tissue using a 

scalpel. The remaining skin was rinsed with deionized water and diced into 10 to 20 

pieces. The diced samples were dried for a minimum of 6 h using a rotary evaporator. 

Between 0.3 and 1.0 mg of the dried samples were weighed using a microbalance and 

packed into tin capsules for stable isotope analysis. 

 

4.3.4 Stable isotope analysis 

 

Stable isotope analyses were conducted at the Purdue Stable Isotope Facility, 

housed in the Department of Earth, Atmospheric, and Planetary Sciences at Purdue 

University, USA. The ratio of 13C to 12C and 15N to 14N in each sample was determined 

using a Carlo Erba 1108 Elemental Analyser coupled with a Sercon 20-22 Continuous 

Flow Isotope Ratio Mass Spectrometer. Stable isotope values were expressed in delta (δ) 

notation relative to universal standards in parts per thousand (‰) using the following 

equation: 

 

𝛿𝑋 = ([
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
] − 1) ∗ 1000 



115 
 

  

where X is 13C or 15N and Rsample and Rstandard is the ratio of heavier to lighter isotopes of 

the appropriate element in the sample and the standard, respectively. δ13C is expressed 

relative to the standard Pee Dee Belemnite and δ15N is expressed relative to atmospheric 

nitrogen. Analyses are calibrated, to ensure reproducibility, using replicates of Peach 

Leaf standards (NIST1547) with standard deviations (σ) of δ13C being ≤ 0.2 ‰ and δ15N 

being ≤ 0.35 ‰. We did not use a post-hoc correction factor to account for lipids in the 

samples because Post et al. (2007) recommends against lipid normalization for samples 

preserved in ethanol. To assess stable isotope variation between skin samples, 27 samples 

were chosen at random and run in duplicate. The standard deviation (σ) between 

duplicate samples in δ13C was 0.37 ‰ and δ15N was 0.55 ‰.  

For turtles that were sampled on more than one occasion, we calculated the mean 

δ13C and δ15N values for that individual. We used mean values as previous studies have 

confirmed that δ13C and δ15N values in blood plasma do not vary over the nesting season 

(Caut et al. 2008). Moreover, in reptiles the isotopic turnover rates for blood plasma are 

far more rapid than those for skin (Seminoff et al. 2007; Rosenblatt and Heithaus 2013). 

 

4.3.5 Analysis of movement data 

 

The locations of the transmitters were reported via the Argos Satellite System 

(Maryland, USA). The Argos Satellite System assigns each location a class (LC) of 3, 2, 

1, 0, A, or B depending on the confidence of the locations accuracy, 3 being the most 

accurate and B being the least. Using all locations regardless of LC, we filtered all data 

where the movement rate exceeded 240 km d-1. The filtered data was smoothed using a 

state-space model as outlined by Jonsen et al. (2007). For each of the turtles, putative 

foraging grounds were assigned depending on the ocean basins each track was recorded 

heading towards. 
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4.3.6 Statistical analyses 

 

To determine whether stable isotope analysis could be used to determine foraging 

areas for leatherback turtles, we separated the tracked telemetry into groups based on 

their final relayed location. We tested to see if animals tracked to different foraging areas 

had different values for δ13C and δ15N using a Multivariate Analysis of Variance 

(MANOVA) with a Pillai’s trace test. Data were tested for normality and homogeneity 

using Kolmogorov-Smirnov and Levene’s test, respectively. 

If the stable isotope value of turtles tracked to discrete foraging areas were 

statistically different this would not only provide evidence that stable isotope analysis can 

be used to track sea turtle movements but also that turtles post- and pre-nesting foraging 

areas are similar (foraging site fidelity). 

To assign non-satellite tracked individuals to a specific foraging area based on 

their stable isotope ratios, we used Linear Discriminant Function Analysis (DFA). We 

used the δ13C and δ15N ratios of the 16 satellite-tracked leatherback turtles with known 

foraging areas as a training data set (using equal weighted priors) to define the 

discriminant functions. The derived discriminant functions were used to determine the 

probability that each non-satellite tracked individual belonged to a specific foraging area. 

If the probability was > 80 %, individuals were assigned to that foraging area. To test the 

accuracy of the assignment by the DFA, we utilized a Jackknife (leave-one-out) cross-

validation to the training dataset. In this method, each turtle is removed in turn from the 

training dataset and then classified to a foraging area using the discriminant functions 

derived from the remaining turtles in the training dataset. Data were analyzed using the 

program R (R Development Core Team 2011) with an α level of 0.05. 
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4.4 Results 

 

4.4.1 Satellite telemetry 

 

Although 42 satellite transmitters were deployed on leatherback turtles in the 

iSimangaliso Wetland Park between 1996 and 2013, only 32 continued to function during 

these animals’ post-nesting migrations (Figure 3). Of these, 16 were from transmitters 

attached by harness and 16 were from transmitters attached by tether. 

Considering the movements of both harnessed and tethered turtles collectively, 

we identified three basic migratory behaviors. We separated these behaviors by the ocean 

region each individual headed towards (Figure 4), which were: the South Atlantic Ocean 

(SAO), Western Indian Ocean (WIO), and Mozambique Channel (MC). (1) SAO: Over 

half of the tracked individual immediately headed south of the nesting area after the 

completion of nesting. These individuals tended to move within eddies formed by the 

prevailing Agulhas Current that flows down the east coast of South Africa. After reaching 

approximately 36 ° to 40 °S, a total of 9 individuals began heading west into the South 

Atlantic Ocean. These individuals eventually travelled north towards either the Benguela 

Upwelling System or to open waters off the coast of Angola. (2) WIO: Similar to the 

previous behavior, turtles initially followed a route south of the nesting beach. On 

reaching between 36 and 40° S, a total of 10 individuals headed east and remained in the 

Western Indian Ocean. Two of these individuals also eventually began moving north into 

either the open-waters west of Madagascar or into the Mozambique Channel. (3) MC – 

Contrary to the other behaviors, 8 individuals travelled immediately north from the 

nesting area until they reached the Sofala Banks or western Madagascar. While 

migrating, these individuals generally remained within 50 km of the coastline and only 

occasionally ventured out into deeper waters. 

Considering the movements of both harnessed and tethered turtles separately, 

there are notable differences in behavior between the two tracking methods. All the 

turtles tracked by harnessed transmitters initially travelled south of the nesting beach with 

the exception of two individuals that conducted large loops near to the nesting ground 
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and one individual that headed predominantly east. Those individuals that travelled south 

also tended to remain within 300 km of the South African shoreline and made multiple 

curves or revolutions. In contrast, when the tethered turtles migrated south it was less 

common for individuals to remain within 300 km of the South African shoreline and the 

tracks were straighter, showing far fewer revolutions. Moreover, only tethered turtles 

were observed ever immediately migrating north of nesting area and into the coastal 

habitats of the MC. 

For the harnessed transmitters, the mean tracking duration was 143.3 ± 117.6 SD 

days and the maximum tracking duration was 463 days. For the tethered transmitters, the 

mean tracking duration was 111.5 ± 41.32 days and the maximum tracking duration was 

209 days. 

 

4.4.2 Stable isotope analysis 

 

The δ13C of leatherback turtle skin samples ranged from -19.14 to -15.21 ‰ 

(Figure 5). The values for δ13C have a bi-modal distribution with an apparent distinction 

between the two groups at approximately -17.50 ‰. The δ15N of leatherback turtle skin 

samples ranged from 9.45 to 15.09 ‰, although the second highest value was only 12.80 

‰. Values for δ15N were uni-modally distributed.  

The stable isotope values of satellite tracked leatherback turtles revealed that 

individuals migrating to the SAO had a wide-range of δ13C and δ15N values, almost 

spanning the entire range of these values observed for leatherback turtles in this study. 

The stable isotope values of leatherback turtles with foraging areas in the WIO were all in 

the lower δ13C cluster, although they had a wide-range of δ15N values. The stable isotope 

values of those leatherback turtles with foraging areas in the MC were all in the higher 

δ13C cluster and also had similarly high δ15N values. The stable isotopic values of 

individuals tracked to the WIO and MC were significantly different (MANOVA: F = 

18.30, p < 0.001), but no significant difference was identified between the WIO and SAO 

(MANOVA: F = 0.47, p = 0.649) or the SAO and MC (MANOVA: F = 2.66, p = 0.130). 

As the WIO and SAO were more similar than the MC and SAO, we decided to combine 
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the SAO and WIO individuals into a single grouping that would represent individuals 

predominantly occupying pelagic foraging areas. This would contrast with the individuals 

from the MC that exclusively occupied coastal foraging areas. The isotopic values of 

these newly defined ‘pelagic’ and ‘coastal’ groups were significantly different 

(MANOVA: F = 9.51, p = 0.003). 

Using the stable isotope values of the satellite tracked individuals foraging in 

either pelagic or coastal environments as a training data set, we calculated a linear 

discriminant function that could be used to assign foraging areas for those individuals 

that were not tracked by satellite telemetry. Discriminant function analysis of the training 

data set correctly assigned foraging areas for all but two of the satellite tracked 

individuals (87.5 % assigned correctly) with an > 80 % probability of group membership. 

The individuals that were incorrectly assigned consisted of one individual from the SAO 

that was assigned to the coast cohort and one individual from the MC that could not be 

assigned with > 80 % probability of group membership. The robustness of the 

discriminant function analysis was tested using a Jackknife cross-validation method that 

performed just as well as the original model (87.5 % assigned correctly). When the 

discriminant function analysis was applied to non-satellite tracked individuals, it assigned 

61 out of 81 untracked turtles (75.3 %) to either pelagic or coastal foraging habitats. 

Specifically, 29 individuals were assigned to pelagic foraging areas (35.8 %), 33 were 

assigned to coastal foraging areas (40.7 %), and 19 were left unassigned (23.5 %). 

Applying the discriminant function analysis to all turtles, satellite tracked and non-

satellite tracked, 36 individuals were assigned to pelagic foraging areas (37.1 %), 41 were 

assigned to coastal foraging areas (42.3 %), and 20 were left unassigned (20.6 %). 

The δ13C of loggerhead turtle skin samples ranged from -18.98 to -9.35 ‰, a 

much greater range than the leatherback turtles (Figure 6). The δ15N of loggerhead turtle 

skin samples ranged from 7.03 to 14.88 ‰. Both δ15N and δ13C were normally 

distributed, but the δ15N values were slightly positively skewed. At lower δ15N values, 

there was a notable increase in δ13C. There was a large overlap between the δ13C of the 

loggerhead turtles and the leatherback turtles that were assigned as coastal foragers.  
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4.4.3 Comparison of tracking methods 

 

To compare how tracking method may influence migratory behavior we 

determined how often ‘coastal’ or ‘pelagic’ behaviors were recorded using harnessed 

transmitters, tethered transmitters, or stable isotope analysis (Figure 7). From the 16 

harness leatherback turtles that were tracked long enough to identify post-nesting 

behaviors, all migrated into pelagic habitats in the SAO and WIO with the exception of 

one individual that after initially heading south, eventually looped north into the MC. 

From the 16 harness leatherback turtles that were tracked long enough to identify post-

nesting behaviors, only 8 migrated into the pelagic foraging areas in the SAO and WIO. 

The other 8 migrated directly to coastal habitats in the MC. A similar pattern to the 

tethered transmitters was observed in the stable isotope analysis with 47 % being 

assigned to pelagic foraging areas and 53 % being assigned to coastal foraging areas (this 

calculation does not include unassigned individuals). 

 

4.5 Discussion 

 

Through a combination of satellite telemetry and stable isotope analysis, we were 

able to gain novel insights into the at-sea behavior of the leatherback and loggerhead 

turtles. Specifically, by validating the use of stable isotope analysis for tracking the 

foraging movements of this population, we were able to confirm the Mozambique 

Channel as the most common foraging areas for the nesting populations of leatherback 

and loggerhead turtles nesting in the iSimangaliso Wetland Park. We also identified that 

stable isotope analysis mirrored the migratory patterns that were recorded by the low-

drag tethered satellite transmitters, although this was not also the case for turtle tracked 

using high-drag harness transmitters. 
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4.5.1 Isotopic characterization of leatherback turtle foraging behavior 

 

The data generated by the satellite transmitters identified that the leatherback 

turtles from the iSimangaliso Wetland Park foraged in three different ocean regions: the 

pelagic waters of the SAO and WIO, as well as coastal waters of the MC. Although there 

appears no stable isotopic discrimination between either pelagic foraging location (SAO 

or WIO), individuals foraging in pelagic areas had significantly different C and N stable 

isotope values to those foraging in the MC. To this extent, we propose that C and N 

stable isotope analysis can function as a practical alternative to satellite telemetry for 

gaining information on broad-scale foraging habitats of leatherback turtles using samples 

sizes more apt for drawing population-scale conclusions. A productive avenue for future 

research could consequently combine the use of stable isotope analysis with 

measurements of fitness correlates, such as clutch size or carapace length, to provide 

insights into the difference of coastal and pelagic foraging habitats for resource 

acquisition. In turn, this could provide an understanding of the mechanisms that maintain, 

and the demographic consequences of, such divergent foraging habitats (Hatase et al. 

2013). An additional avenue for future research could also investigate whether 

increasingly fine-scale patterns of habitat selection could be determined by combining 

bulk stable isotope analysis with the additional analysis of alternative biomarkers 

including amino-acid specific stable isotopes or trace metals (e.g. Herbert et al. 2009; 

Szép et al. 2009). 

This stable isotopic distinction between coastal and pelagic leatherback turtles 

observed in this study was primarily due to individuals from coastal habitats having 

elevated δ13C relative to their pelagic counterparts. Higher levels of δ13C have also been 

observed in coastal individuals, relative to pelagic individuals, in both loggerhead 

(Hatase et al. 2002) and green turtles Chelonia mydas (Reich et al. 2007), as well as 

many other taxa including marine mammals (Cherel and Hobson 2007), seabirds (Jaeger 

et al. 2013), and invertebrates (Hill et al. 2006). In contrast, very little distinction was 

observed between coastal and pelagic leatherback turtles in δ15N. The relative lack of 

discrimination in δ15N between different leatherback foraging areas suggests leatherback 
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turtles tend to forage at the same trophic level, a pattern that has been confirmed in the 

Pacific (Seminoff et al. 2012). Indeed, the total range in δ15N values (3.35 ‰ when 

excluding a single individual of 15.09 ‰) is comparable to the 3 – 4 ‰ enrichment 

generally seen in δ15N per trophic level (Post 2002). 

 

4.5.2 Isotopic characterization of loggerhead turtle foraging behavior 

 

Almost all the loggerhead turtle samples in this study overlapped in δ13C values 

with the leatherback turtles foraging in the MC, as identified by discriminant function 

analysis. Furthermore, δ13C is commonly used to identify species foraging in similar 

locations, even for species foraging on different prey, as only nominal enrichment of δ13C 

occurs along trophic interactions (Post 2002; Jaeger et al. 2013). Thus, the stable isotope 

data suggests that loggerhead turtles predominantly feed in coastal habitats in the 

Mozambique Channel. This corroborates findings from external tag recoveries (Luschi et 

al. 2003b; R Nel, unpublished data) and satellite telemetry (Papi et al. 1997; Luschi et al. 

2003b; R Nel, unpublished data). 

Unlike the leatherback turtles, loggerheads had a wide range of δ15N values (total 

range = -7.53 ‰). This indicates that individuals within this population forage on a range 

of trophic levels and also on a range of different prey items. Indeed, loggerhead turtles 

are often considered opportunistic omnivores due to the wide-range of species on which 

they feed and the varied environments in which they forage (Tomas et al. 2001; Thomson 

et al. 2012).  

A particularly interesting pattern observed in this study from the stable isotope 

data from loggerhead turtles is that at low δ15N, δ13C also increases. As δ15N is often a 

good indicator of trophic level, as predators are predictably enriched relatively to their 

prey (Post 2002), and δ13C is often a good indicator of foraging location, due to its lack of 

trophic enrichment, (Cherel and Hobson), this suggests that the loggerhead turtles nesting 

in the iSimangaliso Wetland Park might be foraging in two geographic distinct locations 

and at different trophic level. Thus, we hypothesize that this lower δ15N and higher δ13C 

grouping is a product of some individuals foraging in particularly shallow coastal 
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environments, where their diets may even have an increased prevalence of seagrass 

(Macia et al. 2004, Lugendo et al. 2006). Evidence for this hypothesis is provided by the 

stable isotope values of seagrasses and decapods (common prey of loggerhead turtles, 

Tomas et al. 2001) within the region. Seagrasses and benthic decapods in collected in the 

coastal waters of Tanzania had δ15N values between 2 and 5 and δ13C values between -13 

and -16 (Lugendo et al. 2006), which if we accept δ15N and δ13C should be enriched by 1 

and 4 ‰ respectively, fits with the low δ15N and high δ13C loggerhead turtles grouping 

(Figure 8). Conversely, pelagic decapod samples collected from the Benguela Upwelling 

System had δ15N values between 6 and 9 and δ13C values between -15 and -17 (Schukat 

et al. 2014) and this fits with the high δ15N and low δ13C loggerhead grouping. 

Nevertheless, confirming whether the loggerhead turtles in the iSimangaliso Wetland 

Park also forage in either coastal and pelagic environments, and have differing diets 

depending on their foraging location, would require further satellite tracking, gut-content 

analyses and/or in-water observations. 

 

4.5.3 Does satellite tracking affect migratory patterns? 

 

Data from both stable isotope analysis and the tethered transmitters confirmed the 

MC as a critical habitat for leatherback and loggerhead turtles. This is promising 

evidence that low-drag transmitters can accurately record the ‘natural’ migratory 

behavior of free-swimming animals. In contrast, previously published movements of 

leatherback turtles tracked from the iSimangaliso Wetland Park using harness 

transmitters (Luschi et al. 2006) were very similar to those from the additional harness 

transmitters deployed in this study by Oceans and Coast. In the majority of these cases, 

post-nesting turtles headed south of the nesting grounds and conducted loops or 

revolutions in the presence of, and often in accordance with, rotating water masses 

associated with the Agulhas Current (Luschi et al. 2003a). Upon reaching the southern 

extent of the Agulhas Current, these turtles either migrated into the SAO or followed the 

Agulhas Retroflection and remained in the WIO (Lambardi et al. 2008). Similar terminal 

foraging areas were also seen in the leatherback turtles that were tracked using low-drag 
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tethered transmitters; however, the migratory pathways to reach these locations tended to 

differ. Tethered individuals tended to follow straighter routes away from the nesting 

location. In particular, no looping behavior was observed associated with the Agulhas 

Current until individuals reached eddies formed by the Agulhas Retroflection close to 38 

°S. Moreover, half of the tethered turtles did not migrate with the Agulhas Current and 

instead followed near-shore pathways into coastal waters in the MC. 

 Inter-annual variation in the oceanographic conditions near the nesting grounds 

during the years when the transmitters were deployed could explain the behavioral 

differences observed in turtles tracked by harnessed or tethered transmitters. However, 

the prevailing oceanographic features near the nesting beach are fairly consistent between 

years (Gründlingh 1983; De Ruijter et al. 1999). The iSimangaliso Wetland Park is found 

at the landward origin of the southward flowing Agulhas Current, which is fed in part by 

eddies from the Mozambique Channel. The Agulhas Current is one of the strongest 

western boundaries currents in the world and is often considered the southern 

hemisphere’s equivalent to the Gulf Stream (Durgadoo et al. 2013). While the southerly 

reaches of the Agulhas Current are typified by dynamic meandering (Dencausse et al. 

2010), it shows minimal inter-annual meandering from its average position in its northern 

range (Gründlingh 1983; De Ruijter et al. 1999). The anticyclonic mesoscale eddies that 

flow from the Mozambique Channel occasionally extend into the Agulhas Current, but 

the paths of these eddies are also rather uniform and follow the coastal bathymetry of east 

South Africa (Schouten et al. 2003). Furthermore, it should be noted that tethered 

transmitters were deployed over 2 separate years and each year multiple individuals (3 in 

2011/12 and 5 in 2012/13) migrated into the MC, yet this behavior was never observed in 

any of these harnessed turtles tracked between 1996 and 2006. To this extent, it is 

unlikely that the inter-annual variation in oceanographic conditions explains the different 

migratory behaviors observed between turtles tracked using harnessed or tethered 

transmitters. 

An alternative explanation is that the differences in migratory behavior are a 

result of the impacts of attaching or retaining either type of transmitter. While attaching 

bio-logging devices the handling of an organism can often dramatically impact its 
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behavior (Sherrill-Mix and James 2008). However, these effects are generally on the 

scale of days and not months as seen in this study (James et al. 2006; Thomson and 

Heithaus 2014). Instead, it could be that retention of the device may affect behavior due 

to the effects of increased drag. The design and placement of a bio-logging device can 

significantly alter the amount of additional drag these device incur (Hazekamp et al. 

2010; Shorter et al. 2014) and it has been estimated that harnessed transmitters may 

increase the drag experienced by swimming leatherback turtles by over 100 % (Jones et 

al. 2013). In contrast, tethered transmitters are only estimated to increase drag by < 5 % 

(Jones et al. 2014). The differences in drag might therefore lead to the differences in 

behavior between transmitter attachments. Changes in movement speed have already 

been observed between turtles tracked using different tracking methods, with turtles with 

low-drag ridge-mount attachments swimming 10 to 30 % faster than individuals tracked 

using harness attachments (Fossette et al., 2008; Byrne et al. 2009). However, no 

previous studies have indicated that high-drag attachments may alter even migratory 

pathways. 

Leatherback turtles with harnessed transmitters are evidently able to actively 

swim against currents that might flow at a similar rate to their average movement speed 

(Galli et al. 2012). However, the increased energetic expenditure due to the increased 

drag may affect the inclination of an individual to immediately swim against the 

particularly strong currents, especially for species like the leatherback turtles that tend to 

demonstrate flexible foraging migrations (Fossette et al. 2010; Shillinger et al. 2011). 

This effect may be particularly apparent for the turtles nesting in the iSimangaliso 

Wetland Park considering the strength of the Agulhas Current that flows just offshore. As 

such harnessed individual may not head to their typical foraging areas in the MC and 

instead follow the prevailing flow of the Agulhas Current south, opportunistically 

foraging when possible. This could also explain why looping within eddies of the 

Agulhas Current was particularly common in harnessed turtles, but not tethered animals 

that showed more directed movements.  
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4.5.4 Conclusions and conservation implications 

 

Our study validates that stable isotope analysis can be used to identify foraging 

habitats for leatherback and loggerhead turtles in the waters of southern Africa. Through 

this method we confirmed the importance of the MC and especially the Sofala Banks as a 

critical foraging habitat for the leatherback and loggerhead turtles nesting in the 

iSimangaliso Wetland Park. Worryingly, the Sofala Banks also hosts a profitable shrimp-

trawling fishery (Palha de Sousa et al. 2006) and this fisheries incur substantial sea turtle 

by-catch for both leatherback and loggerhead turtles (Gove et al. 2001). In fact, by-catch 

of leatherback turtles in the Sofala Banks could explain why the leatherback turtle 

populations have remained low even after the protection of their nesting beaches (Nel et 

al. 2013). However, by-catch rates could be reduced by the implementation of turtle-

excluder devices throughout the shrimp-trawl fishery. Considering the importance of this 

coastal foraging area for leatherback turtles, we recommend the use of such conservation 

measures to ensure the long-term survival of leatherback turtles in the MC. 

While the importance of this habitat had been suggested by the deployment of 

low-drag tethered transmitters deployed on leatherback turtles (Chapter 3), such behavior 

was notably rare in turtles tracked using high-drag harnessed transmitters. To gain an 

accurate depiction of animal movement patterns, we thus recommend using transmitters 

with nominal increases in drag, especially when animals are interacting with strong 

currents, such as the Agulhas Current. Future efforts should therefore be made to 

minimize the drag associated with bio-logging devices if they are to collect an accurate 

representation of an animal’s ‘natural’ movement patterns. This is particularly important 

when considering that spatial management plans are increasingly being developed around 

satellite tracking data (Roe et al. 2014; Fossette et al. 2014). Finally, the coastal foraging 

pattern observed in leatherback turtles in this study is relatively uncommon for this 

species. In fact, leatherback turtles are often considered paradigmatic examples of pelagic 

specialists (Luschi et al. 2006; Shillinger et al. 2011). Our findings suggest that in 

contrary the habitat preferences of leatherback turtles appears to far more flexible than 

previously thought. 
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4.7 Tables 

 

Table 4.7.1 Details of all the satellite transmitters deployed onto leatherback turtles Dermochelys coriacea nesting in the iSimangaliso 

Wetland Park, South Africa between 1996 and 2013. Transmitter 1079011 was purposefully removed from an inter-nesting turtle that 

was encountered on a subsequent nesting event. 

Turtle ID Transmitter Model Attachment 

Method 

Date 

Deployed 

Last 

Location 

Final Destination First Published 

1 ST-14 Harness 16/1/1996 18/5/1996 Western Indian Ocean Hughes et al. (1998) 

2 ST-6 Harness 31/1/1999 11/9/1999 South Atlantic Ocean Luschi et al. (2003) 

3 ST-6 Harness 31/1/1999 30/9/1999 South Atlantic Ocean Luschi et al. (2003) 

4 ST-6 Harness 30/1/2000 16/6/2000 Agulhas Current Luschi et al. (2003) 

5 ST-6 Harness 2/2/2000 2/4/2000 Nesting area Luschi et al. (2006) 

6 ST-6 Harness 13/2/2001 20/5/2001 Agulhas Current Luschi et al. (2006) 

7 ST-6 Harness 13/2/2001 8/7/2001 Nesting area Luschi et al. (2006) 

8 SRDL Harness 13/1/2002 30/1/2002 Western Indian Ocean Luschi et al. (2006) 

9 SRDL Harness 29/1/2003 16/7/2003 South Atlantic Ocean Luschi et al. (2006) 

10 SPOT Harness 07/12/2006 22/12/2006 Nesting area This study 

11 SPOT Harness 04/12/2006 27/3/2007 Western Indian Ocean This study 

12 SPOT Harness 05/12/2006 26/1/2007 Agulhas Current This study 

13 SPOT Harness 06/12/2006 13/4/2007 South Atlantic Ocean This study 

14 SPOT Harness 05/12/2006 10/3/2007 Western Indian Ocean This study 

15 SPOT Harness 06/12/2006 23/12/2006 Nesting area This study 

16 SPOT Harness 20/01/2008 29/8/2008 South Atlantic Ocean This study 

17 SPOT Harness 24/01/2008 17/8/2008 Mozambique Chanel This study 

18 SPOT Harness 25/01/2008 02/5/2009 South Atlantic Ocean This study 

19 SPOT Harness NO DATA   This study 

20 Splash Harness 15/1/2009 20/2/2009 Nesting area This study 
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21 Splash Harness 14/1/2009 29/8/2009 Agulhas Current This study 

22 Splash Harness 14/1/2009 20/1/2009 Western Indian Ocean This study 

23 MK10-PAT  Tether 10/11/2011 14/12/2011 Nesting area This study 

24 MK10-PAT Tether 14/11/2011 30/12/2011 Western Indian Ocean This study 

25 MK10-PAT Tether 11/12/2011 30/12/2011 Nesting area This study 

26 MK10-PAT Tether 09/1/2012 01/5/2012 Western Indian Ocean This study 

27 MK10-PAT Tether 09/1/2012 05/6/2012 South Atlantic Ocean This study 

28 MK10-PAT Tether 20/1/2012 23/5/2012 Mozambique Chanel This study 

29 MK10-PAT Tether 25/1/2012 08/6/2012 Western Indian Ocean This study 

30 MK10-PAT Tether 13/2/2012 09/6/2012 Mozambique Chanel This study 

31 MK10-PAT Tether 27/2/2012 24/5/2012 South Atlantic Ocean This study 

32 MK10-PAT Tether 27/2/2012 22/9/2012 Mozambique Chanel This study 

33 MK10-PAT Tether 28/12/2012 03/6/2013 Mozambique Chanel This study 

34 MK10-PAT Tether 04/1/2013 21/2/2013 Nesting area This study 

35 MK10-PAT Tether 13/1/2013 20/2/2013 Nesting area This study 

36 MK10-PAT Tether 13/1/2013 06/4/2013 South Atlantic Ocean This study 

37 MK10-PAT Tether 16/1/2013 05/6/2013 Mozambique Chanel This study 

38 MK10-PAT Tether 22/1/2013 15/4/2013 Western Indian Ocean This study 

39 MK10-PAT Tether 24/1/2013 15/5/2013 Mozambique Chanel This study 

40 MK10-PAT Tether 01/2/2013 06/4/2013 Western Indian Ocean This study 

41 MK10-PAT Tether 11/2/2013 29/5/2013 Mozambique Chanel This study 

42 MK10-PAT Tether 15/2/2013 17/4/2013 Mozambique Chanel This study 
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Table 4.7.2 Number of skin samples collected from nesting leatherback Dermochelys coriacea and loggerhead Caretta caretta turtles in 

the iSimangaliso Wetland Park between 2011/12 and 2012/13. 

 

 ––––––––––––––––Leatherback––––––––––––––––  ––––––––––––––––Loggerhead–––––––––––––––– 

 ––––––# of times an individual was sampled–––––– ––––––# of times an individual was sampled–––––– 

Year 1 2 3 4 Total 1 2 3 4 Total 

2011/12 46 11 4 0 61 43 0 0 0 43 

2012/13 24 8 2 2 36 76 1 0 0 77 

Total 70 19 6 2 134 samples from  

97 individuals 

119 1 0 0 121 samples from 120 

individuals 
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4.8 Figures 

 

Figure 4.1 Movements of 42 leatherback turtles Dermochelys coriacea tracked from their nesting beach in the iSimangaliso Wetland 

Park (green star) between 1996 and 2013. Black lines represent the movements of 9 turtles that were tracked using satellite transmitters 

attached using a harness. These tracks have been previously published in Luschi et al. (2006). The dark-red lines represent the 

movements of 13 turtles that were tracked using satellite transmitters attached using a harness and deployed by the organization Oceans 

and Coasts, South Africa. The blue lines represent the movements of 20 turtles that were tracked using satellite transmitters attached 

using a tethered and deployed as part of this study. 
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Figure 4.2 Movements of 20 leatherback turtles Dermochelys coriacea tracked from their nesting beach in the iSimangaliso Wetland 

Park (green star) between 2011 and 2013. All turtles were tracked using satellite transmitters attached using a tethering method. The 

tracks are color coded depending their terminus: green represents the South Atlantic Ocean, red represents the Western Indian Ocean, and 

blue represents the Mozambique Channel. 
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Figure 4.3 Stable isotope values of skin (stratum corneum) samples collected from nesting leatherback turtles Dermochelys coriacea 

within the iSimangaliso Wetland Park between 2011 and 2013. Colored circles represent individuals that were tracked using satellite 

telemetry: red circles represent individuals that migrated into the Western Indian Ocean (WIO), green circles represent individuals that 

migrated into the South Atlantic Ocean (SAO), and blue circles represent individuals that migrated into the Mozambique Channel (MC). 

Individuals migrating to the WIO and SAO were separated from the MC to represent pelagic and coastal foragers, respectively. 

Discriminant function analyses were used to assign foraging areas for non-satellite tracked individuals as either coastal (grey) or pelagic 

individuals (black). Individuals that could not be assigned to either group with > 80 % certainty were left unassigned (white). 
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Figure 4.4 Stable isotope values of skin (stratum corneum) samples collected from nesting loggerhead Caretta caretta and leatherback 

Dermochelys coriacea turtles within the iSimangaliso Wetland Park between 2011 and 2013. Loggerhead turtles are represented by 

yellow triangles and leatherback turtles are represented by circles. For the leatherback turtles, discriminant function analyses were used to 

assign foraging areas for non-satellite tracked individuals as either coastal (grey) or pelagic individuals (black). Individuals that could not 

be assigned to either group with > 80 % certainty were left unassigned (white). 
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Figure 4.5 Comparison to whether different tracked methods: harnessed or tethered transmitters, or stable isotope analysis; recorded 

differential importance of pelagic or coastal foraging areas for the leatherback turtles Dermochelys coriacea nesting in the iSimangaliso 

Wetland Park. 
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Figure 4.6 Stable isotope values of skin (stratum corneum) samples collected from nesting loggerhead Caretta caretta and leatherback 

Dermochelys coriacea turtles within the iSimangaliso Wetland Park between 2011 and 2013. Also displayed are potential food items. 

Loggerhead turtles are represented by yellow triangles and leatherback turtles are represented by circles. For the leatherback turtles, 

discriminant function analyses were used to assign foraging areas for non-satellite tracked individuals as either coastal (grey) or pelagic 

individuals (black). Individuals that could not be assigned to either group with > 80 % certainty were left unassigned (white). Seagrass 

are represented by squares and decapods are represented by diamonds. Samples in pink and turquoise were collected from the benthos 

from Marumbi, Tanzania and Chwaka, Tanzania, respectively, and were both previously published in Lugendo et al. (2006). Dark blue 

diamonds represent the mean stable isotope values from 6 different decapod species collected in pelagic waters of the Benguela 

Upwelling System and were previously published in Schukat et al. (2014). Error bars represent ± 1 SD.
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APPENDIX A 

 

Methodology for attaching towable devices to sea turtles 

 

The tethering method used to attach the transmitter was similar to that used in 

Morreale (1999), Blanco et al. (2012), and Patel (2013). The attachment method can be 

divided into a six major steps (Figure 1).  

(Step 1) An electric drill with a sterilized drill bit was used to create a 5 mm diameter 

incision 20 to 30 mm from posterior edge of the pygal process. The incision was 

immediately treated with spray antiseptic. 

(Step 2) The ‘needle’ – a pre-made length of surgical tubing of 5 mm diameter and 

walls of 1 mm thickness attached to 45 kg (100 lb) fishing line using an equivalent 

strength crimp – was pulled through the incision, leaving some surgical tubing 

protruding both above and below the carapace.  

(Step 3) The protruding surgical tubing was cut flush with the carapace.  

(Step 4) A length of 180 kg (400 lb) flexible fishing line approximately 1.25 m long 

was threaded halfway through the incision. To reduce friction between the surgical 

tubing and the fishing line, the fishing line was coated with a water-based lubricant. 

The fishing line extending below the carapace was looped through the ‘lower button’ – 

a delrin cyclinder 40 mm in diameter and 15 mm in height with an upside-down Y-

shaped hole in the centre. The fishing line was then re-thread back through the surgical 

tubing, reapplying lubricant if needed. 

(Step 5) On the dorsal-side of the carapace, both ends of the fishing line were passed 

through the ‘upper button’ – a delrin cylinder 20 mm in diameter and 10 mm in height 

with a straight hole in the middle. Both ends of the fishing line were pulled taught and 

crimped directly above the upper button using 180 kg (400 lb) crimps.
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(Step 6) The longest free-length of fishing line was fastened using a crimp to the 

swivel on the transmitter’s ‘lanyard’ at a length of between 25 and 30 cm. The ‘lanyard’ 

was formed of a length of fishing line approximately 15 cm long that was attached at 

opposing ends to a 180 kg (400 lb) swivel and the Mk10 PAT with 180 kg (400 lb) 

crimps. As a result, the total length of the tether was between 40 and 55 cm from the 

upper button to the base of the transmitter. The exact length was decided in the field, 

ensuring that the Mk10 PAT could not be reached by the front flippers but would be 

able to reach the surface when the turtles emerged to breathe. When it was confirmed 

that the transmitter was securely attached to the turtle, all the excess fishing line was 

trimmed to the base of the crimps using wire cutters. 

 

Recovering and reattaching a new transmitter 

 

If a turtle with an attached satellite transmitter was encounter during a subsequent 

nesting event the transmitter was recovered and a new device was deployed. To remove 

a transmitter the fishing line beneath the lower button was cut and the tether was pulled 

free. To deploy a new transmitter required only steps 4 to 6. 
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Figures 

 

 

Fig. A.1. Method for attaching an Mk10-PAT transmitter onto a sea turtles carapace
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APPENDIX B 

 

Risks associated with tethered transmitters 

 

Two major concerns are often raised when proposing the use of tethered 

transmitters on sea turtles: (1) entanglement with the tether and (2) creating a hole 

in the carapace to provide an anchoring site for the tether. Here, I will discuss 

these issues and present evidence provided while completing this thesis that 

impact the validity of these concerns. 

 

Entanglement 

 

One often-raised concern with tethered transmitters is that the tether could 

become entangled in the turtle’s hind-flippers or snagged on a rock or fishing net. While 

the probability of this occurring is low, the consequences could be fatal. To minimize 

this risk, each transmitter was fitted with a release pin that would break upon receiving 

45 kg (100 lb) of tension. This is low enough that a leatherback turtles should be able 

to break the release pin with ease and thus, free itself if entangled. Evidence that 

leatherback turtles are indeed able to break the release pin was provided during a 

reencounter with a nesting leatherback turtle that previously had a transmitter (107903) 

attached. When the turtle was re-encountered, the transmitter was missed but the anchor 

mechanism for holding the tether to the carapace of the turtle was undamaged. 

Moreover, later that month I started to received signal from the missing satellite 

transmitter.  I only received signals during spring-low tides and their location was 100 

m offshore from the nesting beach. I conclude that while the turtle was returning to the 

ocean from a previous nesting event that transmitter had become snagged on a rock that 
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was only exposed at spring-low tides. The transmitter had then broken off the turtle but 

remained snagged on the rock. This would explain the location of the transmitter and 

that is only transmitted data at spring-low tides. 

 

The attachment site 

 

Another concern associated with tethered attachments is potential for harm 

when creating a hole in the carapace, into which the tethered will be anchored. In this 

study, the hole was 5 mm in diameter and made through the pygal process. To 

minimize the risk of infection, the hole was created using a drill bit that had been 

sterilized with alcohol and a new drill bit was used for each attachment. In addition, 

after the hole had been created it was immediately sterilized using an antiseptic spray 

(oxytetracycline). 

Making the hole extruded a white pithy substance. In only 2 out the 20 

attachments was blood seen. In both instances the bleeding was not severe and 

stopped immediately after the surgical tubing was put in place. 

 As 8 of the turtle with transmitters were re-encountered multiple times, it was 

possible to reinspect the attachment sites multiple weeks after their creation. In none 

of the cases was there any evidence of infection or that the hole had enlarged (Figure 

1). 

 

Conclusion 

 

 Bio-logging devices often have non-intentional impacts on the behaviour of 

the study animals (Chapter 4). Serious consideration must therefore be given to the 

style of bio-logging device, and the attachment mechanism, before such devices are 

deployed. After careful deliberation, we chose to employ pop-up archival transmitters 

attached using a tethering techinique (Appendix A). While concerns are often raised 

about the potential risk associated with the use of such transmitters, during this study 

we found no evidence supporting these claims.  
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Figures 

 

 

 

Figure B.1 An incision in the pygal process of the carapace of a leatherback turtle 

Dermochelys coracea. The incision was initially made for the attachment of a tethered 

transmitters. The picture was taken 30 days after the original attachment and after the 

tether had been removed. 
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APPENDIX C 

 

Why towable transmitters stop transmitting? 

 

 Satellite transmitters have finite life-spans, but the reasons they stop 

functioning can be highly varied. These may include: (1) premature release from or 

death of the study animal, (2) bioaccumulation of epibiota blocking important sensors, 

or (3) battery constraints. Here, I will discuss these three potential reasons that 

transmitters stop functioning and investigate which may have played the most 

important role in defining life-span of the transmitters used in this study.  

 

Premature release 

 

When a transmitter stopped diving to depths lower than 10 m for a period of 

over 10 days, it was assumed the transmitter had broken off the animal or the animal 

had died (Table 1). This occurred in 6 cases. In 3 of these instances it occurred while 

the turtle was still inter-nesting and the transmitter probably snapped off while the 

turtle was nesting. In the other 3 instances it occurred when the turtle was far out to 

sea. It could also be that the transmitters remained attached but the animal had died; 

however, it is impossible with the available data to determine if a transmitter had 

detached or the animal had died.  

 

Bio-fouling 

 

 Tethered transmitters must float the surface in order to make a successful 

satellite connection. To this extent, the transmitters must remain positively buoyant to 

continue relaying data. However, epibiota attaching to the transmitter (bio-fouling) 

can gradually reduce its buoyancy. We predict that biofouling rates would be highest 

on these animals that migrated to the Mozambique Channel because turtles swam
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slower and occupied warmer temperature than those that migrated into more pelagic 

waters. Yet this was not the case (Figure 1). Thus, we conclude that bio-fouling is not 

a majorly limiting factors in the life-span of the transmitters used in this study. 

 

Battery life 

 

With the setup described in section 3.3.4, the Mk10-Host software 

(v1.26.2003; Wildlife Computers) predicted transmitters, which were fitted with two 

AA batteries, should be able to continually function to 150 to 300 days. This is far 

shorter than the 123.8 days mean transmitter life-span observed in this study and only 

6 transmitters relayed data for longer than 150 days (Table 1).  However, it is 

important to note that this calculation includes data from transmitters that are 

suspected to have detached from the animal before the transmitter stopped 

functioning.  

These transmitters that are no longer attached to an animal may be expected to 

continue to transmitter data continually until the battery fails. As the transmitters 

occasional relay data on the remaining voltage of the battery pack, we can use this 

information to infer the minimum voltage that must remain in the battery pack for the 

satellite transmitter to remain functioning. Looking at the battery voltage over time 

for all the deployed transmitters indicated that all transmitter start with approximately 

3.6 V and this remains rather consistent until the transmitters has been deployed for 

approximately 100 days (Figure 2). After this point, the voltage begins to decline. 

This decline continues until below 3.0 V at which all the transmitters stop 

functioning. I hypothesis this is the point at which the battery voltage is too low to 

continue functioning. 

 

7.5. Conclusions 

 

 It appears that a combination of premature release and battery-life are the 

major factors determining the life-span of each transmitter, while biofouling is of 

relatively minor importance.  

To determine which factors cause transmitters to release prematurely could be 

achieved by observing tethered turtles during active swimming. This information 
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could provide valuable insights into why transmitters prematurely release and what 

can be done to avoid this. It would be possible to increase the battery-life by 

increasing the number of batteries within each transmitters (MK10-PAT contain 2 AA 

batteries as standard); however, this would increase the weight of the transmitter. 

Offsetting the increased weight would increase require additional float for buoyancy 

and increase the overall size and drag of the transmitter. More promising would be the 

use of solar-power transmitters, or those that are powered by the animal movements, 

as they can function indefinitely.
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Tables 

Figure C.1 Life-span of transmitters accounting for recovery and redeployement. Values in brackets are the final transmission from the 

transmitter, while values not in brackets are those when diving data were no longer recorded and it was assumed the transmitter had 

broken off the animal. Final destinations are: Mozambique Channel (MC), Western Indian Ocean (WIO), and South Atlantic Ocean 

(SAO). 

Transmitter 

# 

1st 

Deployed 

Recovered 2nd 

Deployed 

Recovered 3rd 

Deployed 

Final 

Transmission 

Duration 

(d) 

Final 

Location 

Fate 

37795 4/1/2013 25/01/2013 03/02/2013 12/02/2013 15/02/2013 17/04/2013 

(17/04/2013) 

91 

(91) 

MC Battery 

37801 1/2/2013     06/04/2013 

(06/04/2013) 

64 

(64) 

WIO ? 

107887 16/1/2013 26/01/2013 12/02/2013   03/06/2013 

(03/06/2013) 

121 

(121) 

MC Battery 

107889 13/1/2013     06/04/2013 

(04/07/2013) 

83 

(172) 

SAO Release 

107892 13/1/2013     20/02/2013 

(02/03/2013) 

38 

(48) 

NB Release 

107901 10/11/2011 14/12/2011 09/01/2012   05/06/2012 

(05/06/2012) 

182 

(182) 

SAO ? 

107902 14/11/2011     30/12/2011 

(30/12/2011) 

46 

(46) 

WIO ? 

107903 11/12/2011     30/12/2011 

(20/06/2012) 

19 

(192) 

NB Release 

107904 9/1/2012     01/05/2012 

(01/05/2012) 

113 

(113) 

WIO ? 

107905 20/1/2012     23/05/2012 

(23/05/2012) 

124 

(124) 

MC ? 

107906 25/1/2012 13/2/2012 28/12/2012 03/02/2013 15/02/2013 21/02/2013 

(17/04/2013) 

62 

(117) 

NB Release 
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107907 13/2/2012     08/06/2012 

(08/06/2012) 

116 

(116) 

WIO ? 

107908 13/2/2012     09/06/2012 

(09/06/2012) 

117 

(117) 

MC ? 

107909 27/2/2012     24/05/2012 

(24/05/2012) 

87 

(87) 

SAO ? 

107910 27/2/2012     22/09/2012 

(22/09/2012) 

208 

(208) 

MC Battery 

107911 26/1/2013     05/06/2013 

(05/06/2013) 

130 

(130) 

MC ? 

107912 25/1/2013 5/2/2013    05/02/2013 

(27/06/2013) 

11 

(11) 

NB Release 

107913 11/2/2013     29/05/2013 

(27/08/2013) 

107 

(107) 

MC Release 

107914 24/1/2013     15/05/2013 

(24/06/2013) 

111 

(151) 

MC Release 

107915 22/1/2013     15/04/2013 

(30/07/2013) 

83 

(189) 

WIO Release 

       Total 

95.7 

(123.8) 
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Figures 

 

 

Figure C.1 Decrease in the battery power of a PAT Mk10 transmitter over its lifespan. 

Transmitter duration includes both when attached to leatherback turtles, broken off but 

still transmitting, and when used in a previous study. 
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Figure C.2 Average trasmitter durations for turtles that migrated towards different ocean 

basins. 
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Apr '14 Archie Carr Award for Runner-Up Best Oral Presentation in 

Biology at the 34th Annual Symposium on Sea Turtle Biology and 

Conservation. New Orleans, USA. 

 

Jun '09 National Oceanography Centre’s Award for the Highest Achieving 

Graduating Student in Oceanography 

 

INVITED REVIEWER FOR PEER-REVIEWED JOURNALS 

 

 Marine Turtle Newsletter 

 Herpetologica 

 

PROFESSIONAL SKILLS 

 

 Handling of large marine species. 

 Attachment of animal-borne sensors. 

 Experienced on oceanic research vessels. 

 Qualified SCUBA diver (PADI – Open Water). 

 European driving licenses. 

 First Aid certified. 

 Proficiency with: Microsoft Office, ArcGIS, SPSS, SigmaPlot, Dbase, and R 

 Website design (goldringmarinestation.org). 

 Conversational Spanish and French. 

 

PHOTOGRAPHY CREDITS 

 

Feb ’13 Cornell University Homepage (www.cornell.edu) 

News Sentinel (http://www.news-sentinel.com) 

Fondriest – Environmental Monitor (http://www.fondriest.com) 

 

MEDIA APPEARANCES 

 

Oct '13  Tico Times: A Turtle’s Paradise Still  
 

Mar '10 Green Living Project: The Leatherback Trust 
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